Cargando…
Pharmacophoric-constrained heterogeneous graph transformer model for molecular property prediction
Informative representation of molecules is a crucial prerequisite in AI-driven drug design and discovery. Pharmacophore information including functional groups and chemical reactions can indicate molecular properties, which have not been fully exploited by prior atom-based molecular graph representa...
Autores principales: | Jiang, Yinghui, Jin, Shuting, Jin, Xurui, Xiao, Xianglu, Wu, Wenfan, Liu, Xiangrong, Zhang, Qiang, Zeng, Xiangxiang, Yang, Guang, Niu, Zhangming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070395/ https://www.ncbi.nlm.nih.gov/pubmed/37012352 http://dx.doi.org/10.1038/s42004-023-00857-x |
Ejemplares similares
-
Pre‐Training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding
por: Wu, Fang, et al.
Publicado: (2022) -
HeTDR: Drug repositioning based on heterogeneous networks and text mining
por: Jin, Shuting, et al.
Publicado: (2021) -
Hierarchical Graph Representation of Pharmacophore Models
por: Arthur, Garon, et al.
Publicado: (2020) -
Integrating concept of pharmacophore with graph neural networks for chemical property prediction and interpretation
por: Kong, Yue, et al.
Publicado: (2022) -
Towards a partial order graph for interactive pharmacophore exploration: extraction of pharmacophores activity delta
por: Lehembre, Etienne, et al.
Publicado: (2023)