Cargando…
Machine learning unifies flexibility and efficiency of spinodal structure generation for stochastic biomaterial design
Porous biomaterials design for bone repair is still largely limited to regular structures (e.g. rod-based lattices), due to their easy parameterization and high controllability. The capability of designing stochastic structure can redefine the boundary of our explorable structure–property space for...
Autores principales: | Wang, Zhuo, Dabaja, Rana, Chen, Lei, Banu, Mihaela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070414/ https://www.ncbi.nlm.nih.gov/pubmed/37012266 http://dx.doi.org/10.1038/s41598-023-31677-7 |
Ejemplares similares
-
Spinodal Quintessence
por: Holman, R
Publicado: (2000) -
Programs for the calculation of the spinodal decomposition growth rate and the spinodal gap in nanoparticles
por: Pogorelov, Evgeny, et al.
Publicado: (2017) -
Spinodal Gravitational Waves
por: Bea, Yago, et al.
Publicado: (2021) -
Dynamics of spinodal decomposition in nuclei
por: Guarnera, A, et al.
Publicado: (1995) -
Spinodal decomposition of atomic nuclei
por: Chomaz, P, et al.
Publicado: (1996)