Cargando…
Myopia prediction for children and adolescents via time-aware deep learning
This is a retrospective analysis. Quantitative prediction of the children’s and adolescents’ spherical equivalent based on their variable-length historical vision records. From October 2019 to March 2022, we examined uncorrected visual acuity, sphere, astigmatism, axis, corneal curvature and axial l...
Autores principales: | Huang, Junjia, Ma, Wei, Li, Rong, Zhao, Na, Zhou, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070443/ https://www.ncbi.nlm.nih.gov/pubmed/37012269 http://dx.doi.org/10.1038/s41598-023-32367-0 |
Ejemplares similares
-
Prediction of Myopia in Adolescents through Machine Learning Methods
por: Yang, Xu, et al.
Publicado: (2020) -
Deep learning system to predict the 5-year risk of high myopia using fundus imaging in children
por: Foo, Li Lian, et al.
Publicado: (2023) -
Controlling myopia progression in children and adolescents
por: Smith, Molly J, et al.
Publicado: (2015) -
Prediction of Refractive Error Based on Ultrawide Field Images With Deep Learning Models in Myopia Patients
por: Yang, Danjuan, et al.
Publicado: (2022) -
Improved prediction of smoking status via isoform-aware RNA-seq deep learning models
por: Wang, Zifeng, et al.
Publicado: (2021)