Cargando…
Predictive machine learning approaches for the microstructural behavior of multiphase zirconium alloys
Zirconium alloys are widely used in harsh environments characterized by high temperatures, corrosivity, and radiation exposure. These alloys, which have a hexagonal closed packed (h.c.p.) structure thermo-mechanically degrade, when exposed to severe operating environments due to hydride formation. T...
Autores principales: | Hasan, Tamir, Capolungo, Laurent, Zikry, Mohammed A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070626/ https://www.ncbi.nlm.nih.gov/pubmed/37012301 http://dx.doi.org/10.1038/s41598-023-32582-9 |
Ejemplares similares
-
Refinement of the Magnesium–Aluminium Alloy Microstructure with Zirconium
por: Rapiejko, Cezary, et al.
Publicado: (2022) -
Study of Deformation Behavior and Microstructural Evolution in Multiphase Steel
por: Lu, Jun, et al.
Publicado: (2018) -
Microstructure and Tribological Properties of Mo–40Ni–13Si Multiphase Intermetallic Alloy
por: Song, Chunyan, et al.
Publicado: (2016) -
Multiphase CT-based prediction of Child-Pugh classification: a machine learning approach
por: Thüring, Johannes, et al.
Publicado: (2020) -
Predictive multiphase evolution in Al-containing high-entropy alloys
por: Santodonato, L. J., et al.
Publicado: (2018)