Cargando…
Social and spatial heterogeneities in COVID-19 impacts on individual's metro use: A big-data driven causality inference
While mobility intervention policies implemented during the early stages of the COVID-19 outbreak had a significant impact on public transit use, few studies have investigated the individual-level responses in metro transit riding behaviors. Using long time-series cellphone big data from frequent me...
Autores principales: | Liu, Chengcheng, Zhang, Wenjia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070784/ https://www.ncbi.nlm.nih.gov/pubmed/37035417 http://dx.doi.org/10.1016/j.apgeog.2023.102947 |
Ejemplares similares
-
Causal Inference for Heterogeneous Data and Information Theory
por: Hlaváčková-Schindler, Kateřina
Publicado: (2023) -
Big Data, Data Science, and Causal Inference: A Primer for Clinicians
por: Raita, Yoshihiko, et al.
Publicado: (2021) -
ITGH: Information-Theoretic Granger Causal Inference on Heterogeneous Data
por: Behzadi, Sahar, et al.
Publicado: (2020) -
A Carbon Emission Measurement Method for Individual Travel Based on Transportation Big Data: The Case of Nanjing Metro
por: Yu, Wei, et al.
Publicado: (2020) -
Data-driven inference for the spatial scan statistic
por: Almeida, Alexandre CL, et al.
Publicado: (2011)