Cargando…

Paper 19: Evidence-Based Machine Learning Algorithm to Predict Failure Following Cartilage Preservation Procedures in the Knee

OBJECTIVES: To develop machine learning algorithms to predict failure of surgical procedures that address cartilage defects of the knee and detect the most valuable variables associated with failure. METHODS: A single institution prospectively collected database of cartilage procedures was queried f...

Descripción completa

Detalles Bibliográficos
Autores principales: Gilat, Ron, Gilat, Ben, Patel, Sumit, Wagner, Kyle, Haunschild, Eric, Tauro, Tracy, Kaiser, Joshua, Chahla, Jorge, Yanke, Adam, Cole, Brian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071177/
http://dx.doi.org/10.1177/2325967123S00019
_version_ 1785019150159052800
author Gilat, Ron
Gilat, Ben
Patel, Sumit
Wagner, Kyle
Haunschild, Eric
Tauro, Tracy
Kaiser, Joshua
Chahla, Jorge
Yanke, Adam
Cole, Brian
author_facet Gilat, Ron
Gilat, Ben
Patel, Sumit
Wagner, Kyle
Haunschild, Eric
Tauro, Tracy
Kaiser, Joshua
Chahla, Jorge
Yanke, Adam
Cole, Brian
author_sort Gilat, Ron
collection PubMed
description OBJECTIVES: To develop machine learning algorithms to predict failure of surgical procedures that address cartilage defects of the knee and detect the most valuable variables associated with failure. METHODS: A single institution prospectively collected database of cartilage procedures was queried for procedures performed between 2000 and 2018. Failure was defined as revision cartilage surgery and/or knee arthroplasty. One hundred and one preoperative and intraoperative features were evaluated as potential predictors. The dataset was randomly divided into training (70%) and independent testing (30%) sets. Four machine learning algorithms were trained and internally validated. Algorithm performance was assessed using area under curve (AUC) and the Brier score. Local Interpretable Model-agnostic Explanations (LIME) was utilized to assess the optimized algorithm fidelity. RESULTS: A total of 1091 patients who underwent surgical procedures addressing cartilage defects in the knee with a minimum of 2-years of follow-up were included. The mean follow-up was 3.5 ± 2.8 years. The mean age was 40.5 ± 15 years. There were 205 (18.8%) patients who failed at final follow-up. The Random Forest algorithm was found to be the best performing algorithm, with an AUC of 0.765 and a Brier score of 0.135. The 10 most important features for predicting failure following surgical procedures addressing cartilage defects of the knee were: symptom duration, age, body mass index (BMI), lesion grade, total lesion area (sum of all lesion areas), number of previous surgeries, number of lesions in the knee, gender, athletic level, and traumatic etiology. LIME analysis allowed for assessment of the optimized algorithm fidelity, as well as provided a patient-specific comparison for the risk of failure of an individual patient being assigned various types of cartilage procedures. CONCLUSIONS: Machine learning algorithms were accurate in predicting the risk of failure following cartilage procedures of the knee, with the most important features being symptom duration, age, BMI, lesion grade, and total lesion area. Machine learning algorithms may be used to compare the risk of failure of specific patient-procedure combinations in the treatment of cartilage defects of the knee. Integrated human and machine learning decision-making may improve patient selection and bring about the new era of patient-tailored evidence-based clinical care.
format Online
Article
Text
id pubmed-10071177
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-100711772023-04-05 Paper 19: Evidence-Based Machine Learning Algorithm to Predict Failure Following Cartilage Preservation Procedures in the Knee Gilat, Ron Gilat, Ben Patel, Sumit Wagner, Kyle Haunschild, Eric Tauro, Tracy Kaiser, Joshua Chahla, Jorge Yanke, Adam Cole, Brian Orthop J Sports Med Article OBJECTIVES: To develop machine learning algorithms to predict failure of surgical procedures that address cartilage defects of the knee and detect the most valuable variables associated with failure. METHODS: A single institution prospectively collected database of cartilage procedures was queried for procedures performed between 2000 and 2018. Failure was defined as revision cartilage surgery and/or knee arthroplasty. One hundred and one preoperative and intraoperative features were evaluated as potential predictors. The dataset was randomly divided into training (70%) and independent testing (30%) sets. Four machine learning algorithms were trained and internally validated. Algorithm performance was assessed using area under curve (AUC) and the Brier score. Local Interpretable Model-agnostic Explanations (LIME) was utilized to assess the optimized algorithm fidelity. RESULTS: A total of 1091 patients who underwent surgical procedures addressing cartilage defects in the knee with a minimum of 2-years of follow-up were included. The mean follow-up was 3.5 ± 2.8 years. The mean age was 40.5 ± 15 years. There were 205 (18.8%) patients who failed at final follow-up. The Random Forest algorithm was found to be the best performing algorithm, with an AUC of 0.765 and a Brier score of 0.135. The 10 most important features for predicting failure following surgical procedures addressing cartilage defects of the knee were: symptom duration, age, body mass index (BMI), lesion grade, total lesion area (sum of all lesion areas), number of previous surgeries, number of lesions in the knee, gender, athletic level, and traumatic etiology. LIME analysis allowed for assessment of the optimized algorithm fidelity, as well as provided a patient-specific comparison for the risk of failure of an individual patient being assigned various types of cartilage procedures. CONCLUSIONS: Machine learning algorithms were accurate in predicting the risk of failure following cartilage procedures of the knee, with the most important features being symptom duration, age, BMI, lesion grade, and total lesion area. Machine learning algorithms may be used to compare the risk of failure of specific patient-procedure combinations in the treatment of cartilage defects of the knee. Integrated human and machine learning decision-making may improve patient selection and bring about the new era of patient-tailored evidence-based clinical care. SAGE Publications 2023-03-29 /pmc/articles/PMC10071177/ http://dx.doi.org/10.1177/2325967123S00019 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0/This open-access article is published and distributed under the Creative Commons Attribution - NonCommercial - No Derivatives License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits the noncommercial use, distribution, and reproduction of the article in any medium, provided the original author and source are credited. You may not alter, transform, or build upon this article without the permission of the Author(s). For article reuse guidelines, please visit SAGE’s website at http://www.sagepub.com/journals-permissions.
spellingShingle Article
Gilat, Ron
Gilat, Ben
Patel, Sumit
Wagner, Kyle
Haunschild, Eric
Tauro, Tracy
Kaiser, Joshua
Chahla, Jorge
Yanke, Adam
Cole, Brian
Paper 19: Evidence-Based Machine Learning Algorithm to Predict Failure Following Cartilage Preservation Procedures in the Knee
title Paper 19: Evidence-Based Machine Learning Algorithm to Predict Failure Following Cartilage Preservation Procedures in the Knee
title_full Paper 19: Evidence-Based Machine Learning Algorithm to Predict Failure Following Cartilage Preservation Procedures in the Knee
title_fullStr Paper 19: Evidence-Based Machine Learning Algorithm to Predict Failure Following Cartilage Preservation Procedures in the Knee
title_full_unstemmed Paper 19: Evidence-Based Machine Learning Algorithm to Predict Failure Following Cartilage Preservation Procedures in the Knee
title_short Paper 19: Evidence-Based Machine Learning Algorithm to Predict Failure Following Cartilage Preservation Procedures in the Knee
title_sort paper 19: evidence-based machine learning algorithm to predict failure following cartilage preservation procedures in the knee
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071177/
http://dx.doi.org/10.1177/2325967123S00019
work_keys_str_mv AT gilatron paper19evidencebasedmachinelearningalgorithmtopredictfailurefollowingcartilagepreservationproceduresintheknee
AT gilatben paper19evidencebasedmachinelearningalgorithmtopredictfailurefollowingcartilagepreservationproceduresintheknee
AT patelsumit paper19evidencebasedmachinelearningalgorithmtopredictfailurefollowingcartilagepreservationproceduresintheknee
AT wagnerkyle paper19evidencebasedmachinelearningalgorithmtopredictfailurefollowingcartilagepreservationproceduresintheknee
AT haunschilderic paper19evidencebasedmachinelearningalgorithmtopredictfailurefollowingcartilagepreservationproceduresintheknee
AT taurotracy paper19evidencebasedmachinelearningalgorithmtopredictfailurefollowingcartilagepreservationproceduresintheknee
AT kaiserjoshua paper19evidencebasedmachinelearningalgorithmtopredictfailurefollowingcartilagepreservationproceduresintheknee
AT chahlajorge paper19evidencebasedmachinelearningalgorithmtopredictfailurefollowingcartilagepreservationproceduresintheknee
AT yankeadam paper19evidencebasedmachinelearningalgorithmtopredictfailurefollowingcartilagepreservationproceduresintheknee
AT colebrian paper19evidencebasedmachinelearningalgorithmtopredictfailurefollowingcartilagepreservationproceduresintheknee