Cargando…
Explanatory predictive model for COVID-19 severity risk employing machine learning, shapley addition, and LIME
The rapid spread of SARS-CoV-2 threatens global public health and impedes the operation of healthcare systems. Several studies have been conducted to confirm SARS-CoV-2 infection and examine its risk factors. To produce more effective treatment options and vaccines, it is still necessary to investig...
Autores principales: | Laatifi, Mariam, Douzi, Samira, Ezzine, Hind, Asry, Chadia El, Naya, Abdellah, Bouklouze, Abdelaziz, Zaid, Younes, Naciri, Mariam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071246/ https://www.ncbi.nlm.nih.gov/pubmed/37015978 http://dx.doi.org/10.1038/s41598-023-31542-7 |
Ejemplares similares
-
Machine learning approaches in Covid-19 severity risk prediction in Morocco
por: Laatifi, Mariam, et al.
Publicado: (2022) -
The Shapley value: essays in honor of Lloyd S. Shapley
por: Roth, Alvin E
Publicado: (1988) -
Veloities in the shapley supercluster
por: Quintana, H., et al.
Publicado: (1994) -
Assimilation of Phosphate of Lime and Its Therapeutical Employment
Publicado: (1869) -
Shapley Ratings in Brain Networks
por: Kötter, Rolf, et al.
Publicado: (2007)