Cargando…

Therapeutic potential of stem cell extracellular vesicles for ischemic stroke in preclinical rodent models: a meta-analysis

BACKGROUND: Extracellular vesicles derived from stem cells (SC-EVs) have been proposed as a novel therapy for ischemic stroke. However, their effects remain incompletely understood. Therefore, we conducted this meta-analysis to systematically review the efficacy of SC-EVs on ischemic stroke in precl...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jing, Deng, Huiyin, Xun, Chengfeng, Chen, Chunli, Hu, Zhiping, Ge, Lite, Jiang, Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071642/
https://www.ncbi.nlm.nih.gov/pubmed/37013588
http://dx.doi.org/10.1186/s13287-023-03270-2
Descripción
Sumario:BACKGROUND: Extracellular vesicles derived from stem cells (SC-EVs) have been proposed as a novel therapy for ischemic stroke. However, their effects remain incompletely understood. Therefore, we conducted this meta-analysis to systematically review the efficacy of SC-EVs on ischemic stroke in preclinical rodent models. METHODS: Using PubMed, EMBASE, and the Web of Science, we searched through studies published up to August 2021 that investigated the treatment effects of SC-EVs in a rodent ischemic stroke model. Infarct volume was the primary outcome. Neurological severity scores (mNSS) were the secondary outcome. The standard mean difference (SMD) and the confidence interval (CI) were calculated using a random-effects model. R and Stata 15.1 were used to conduct the meta-analysis. RESULTS: Twenty-one studies published from 2015 to 2021 met the inclusion criteria. We also found that SCs-EVs reduced infarct volume by an SMD of − 2.05 (95% CI − 2.70, − 1.40; P < 0.001). Meanwhile, our results revealed an overall positive effect of SCs-derived EVs on the mNSS with an SMD of − 1.42 (95% CI − 1.75, − 1.08; P < 0.001). Significant heterogeneity among studies was observed. Further stratified and sensitivity analyses did not identify the source of heterogeneity. CONCLUSION: The present meta-analysis confirmed that SC-EV therapy could improve neuron function and reduce infarct volume in a preclinical rodent ischemic stroke model, providing helpful clues for human clinical trials on SC-EVs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13287-023-03270-2.