Cargando…
Kernelized multiview signed graph learning for single-cell RNA sequencing data
BACKGROUND: Characterizing the topology of gene regulatory networks (GRNs) is a fundamental problem in systems biology. The advent of single cell technologies has made it possible to construct GRNs at finer resolutions than bulk and microarray datasets. However, cellular heterogeneity and sparsity o...
Autores principales: | Karaaslanli, Abdullah, Saha, Satabdi, Maiti, Tapabrata, Aviyente, Selin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071725/ https://www.ncbi.nlm.nih.gov/pubmed/37016281 http://dx.doi.org/10.1186/s12859-023-05250-y |
Ejemplares similares
-
Community detection in multi-frequency EEG networks
por: Karaaslanli, Abdullah, et al.
Publicado: (2023) -
Multiview Consensus Graph Learning for lncRNA–Disease Association Prediction
por: Tan, Haojiang, et al.
Publicado: (2020) -
Consensus Kernel K-Means Clustering for Incomplete Multiview Data
por: Ye, Yongkai, et al.
Publicado: (2017) -
Benchmarking of a Bayesian single cell RNAseq differential gene expression test for dose–response study designs
por: Nault, Rance, et al.
Publicado: (2022) -
Multiview machine learning for data analysis
por: Sun, Shiliang, et al.
Publicado: (2019)