Cargando…
Fast and Accurate Amyloid Brain PET Quantification Without MRI Using Deep Neural Networks
This paper proposes a novel method for automatic quantification of amyloid PET using deep learning–based spatial normalization (SN) of PET images, which does not require MRI or CT images of the same patient. The accuracy of the method was evaluated for 3 different amyloid PET radiotracers compared w...
Autores principales: | Kang, Seung Kwan, Kim, Daewoon, Shin, Seong A, Kim, Yu Kyeong, Choi, Hongyoon, Lee, Jae Sung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Nuclear Medicine
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071781/ https://www.ncbi.nlm.nih.gov/pubmed/36328490 http://dx.doi.org/10.2967/jnumed.122.264414 |
Ejemplares similares
-
Development and evaluation of an automated quantification tool for amyloid PET images
por: Tsubaki, Yuma, et al.
Publicado: (2020) -
Glitter in the Darkness? Nonfibrillar β-Amyloid Plaque Components Significantly Impact the β-Amyloid PET Signal in Mouse Models of Alzheimer Disease
por: Biechele, Gloria, et al.
Publicado: (2022) -
Noninvasive quantification of SIRT1 expression–activity and pharmacologic inhibition in a rat model of intracerebral glioma using 2-[(18)F]BzAHA PET/CT/MRI
por: Laws, Maxwell T, et al.
Publicado: (2020) -
Comparison of the Efficacy of Fluorometholone With and Without Benzalkonium Chloride in Ocular Surface Disease
por: Kim, Yeoun-Hee, et al.
Publicado: (2015) -
Interrogating Glioma-Associated Microglia and Macrophage Dynamics Under CSF-1R Therapy with Multitracer In Vivo PET/MRI
por: Foray, Claudia, et al.
Publicado: (2022)