Cargando…
Predicting poststroke dyskinesia with resting-state functional connectivity in the motor network
SIGNIFICANCE: Motor function evaluation is essential for poststroke dyskinesia rehabilitation. Neuroimaging techniques combined with machine learning help decode a patient’s functional status. However, more research is needed to investigate how individual brain function information predicts the dysk...
Autores principales: | Lin, Shuoshu, Wang, Dan, Sang, Haojun, Xiao, Hongjun, Yan, Kecheng, Wang, Dongyang, Zhang, Yizheng, Yi, Li, Shao, Guangjian, Shao, Zhiyong, Yang, Aoran, Zhang, Lei, Sun, Jinyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072005/ https://www.ncbi.nlm.nih.gov/pubmed/37025568 http://dx.doi.org/10.1117/1.NPh.10.2.025001 |
Ejemplares similares
-
Effects of eye-acupuncture combined with rehabilitation training for poststroke dyskinesia: A protocol for systematic review and meta-analysis
por: Wang, Qi, et al.
Publicado: (2021) -
Resting‐state connectivity predicts levodopa‐induced dyskinesias in Parkinson's disease
por: Herz, Damian M., et al.
Publicado: (2016) -
Hand Rehabilitation Robotics on Poststroke Motor Recovery
por: Yue, Zan, et al.
Publicado: (2017) -
Resting-state electroencephalography changes in poststroke patients with visuospatial neglect
por: Zhang, Yichen, et al.
Publicado: (2022) -
Aberrant dynamic Functional-Structural connectivity coupling of Large-scale brain networks in poststroke motor dysfunction
por: Liu, Xiaoying, et al.
Publicado: (2023)