Cargando…
Triple-kernel gated attention-based multiple instance learning with contrastive learning for medical image analysis
In machine learning, multiple instance learning is a method evolved from supervised learning algorithms, which defines a “bag” as a collection of multiple examples with a wide range of applications. In this paper, we propose a novel deep multiple instance learning model for medical image analysis, c...
Autores principales: | Hu, Huafeng, Ye, Ruijie, Thiyagalingam, Jeyan, Coenen, Frans, Su, Jionglong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072016/ https://www.ncbi.nlm.nih.gov/pubmed/37363384 http://dx.doi.org/10.1007/s10489-023-04458-y |
Ejemplares similares
-
A Novel Method for Sea-Land Clutter Separation Using Regularized Randomized and Kernel Ridge Neural Networks
por: Zhang, Le, et al.
Publicado: (2020) -
Weakly supervised learning for classification of lung cytological images using attention-based multiple instance learning
por: Teramoto, Atsushi, et al.
Publicado: (2021) -
Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening
por: Chikontwe, Philip, et al.
Publicado: (2021) -
Lung cancer diagnosis using deep attention‐based multiple instance learning and radiomics
por: Chen, Junhua, et al.
Publicado: (2022) -
Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data
por: Huang, Daiyun, et al.
Publicado: (2021)