Cargando…
Deep reinforcement learning-based approach for rumor influence minimization in social networks
Spreading malicious rumors on social networks such as Facebook, Twitter, and WeChat can trigger political conflicts, sway public opinion, and cause social disruption. A rumor can spread rapidly across a network and can be difficult to control once it has gained traction.Rumor influence minimization...
Autores principales: | Jiang, Jiajian, Chen, Xiaoliang, Huang, Zexia, Li, Xianyong, Du, Yajun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072046/ https://www.ncbi.nlm.nih.gov/pubmed/37363387 http://dx.doi.org/10.1007/s10489-023-04555-y |
Ejemplares similares
-
A survey on rumor detection and prevention in social media using deep learning
por: Pattanaik, Barsha, et al.
Publicado: (2023) -
A Rumor Detection Method from Social Network Based on Deep Learning in Big Data Environment
por: Cen, Junjie, et al.
Publicado: (2022) -
Rumors clarification with minimum credibility in social networks
por: Yao, Xiaopeng, et al.
Publicado: (2021) -
Detecting rumor outbreaks in online social networks
por: Frąszczak, Damian
Publicado: (2023) -
Research status of deep learning methods for rumor detection
por: Tan, Li, et al.
Publicado: (2022)