Cargando…
Inclusion of minor alleles improves catalogue-based prediction of fluoroquinolone resistance in Mycobacterium tuberculosis
OBJECTIVES: Fluoroquinolone resistance poses a threat to the successful treatment of tuberculosis. WGS, and the subsequent detection of catalogued resistance-associated mutations, offers an attractive solution to fluoroquinolone susceptibility testing but sensitivities are often less than 90%. We hy...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072237/ https://www.ncbi.nlm.nih.gov/pubmed/37025302 http://dx.doi.org/10.1093/jacamr/dlad039 |
Sumario: | OBJECTIVES: Fluoroquinolone resistance poses a threat to the successful treatment of tuberculosis. WGS, and the subsequent detection of catalogued resistance-associated mutations, offers an attractive solution to fluoroquinolone susceptibility testing but sensitivities are often less than 90%. We hypothesize that this is partly because the bioinformatic pipelines used usually mask the recognition of minor alleles that have been implicated in fluoroquinolone resistance. METHODS: We analysed the Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC) dataset of globally diverse WGS Mycobacterium tuberculosis isolates, with matched MICs for two fluoroquinolone drugs and allowed putative minor alleles to contribute to resistance prediction. RESULTS: Detecting minor alleles increased the sensitivity of WGS for moxifloxacin resistance prediction from 85.4% to 94.0%, without significantly reducing specificity. We also found no correlation between the proportion of an M. tuberculosis population containing a resistance-conferring allele and the magnitude of resistance. CONCLUSIONS: Together our results highlight the importance of detecting minor resistance-conferring alleles when using WGS, or indeed any sequencing-based approach, to diagnose fluoroquinolone resistance. |
---|