Cargando…
CURTAINs for your sliding window: Constructing unobserved regions by transforming adjacent intervals
We propose a new model independent technique for constructing background data templates for use in searches for new physics processes at the LHC. This method, called Curtains, uses invertible neural networks to parameterise the distribution of side band data as a function of the resonant observable....
Autores principales: | Raine, John Andrew, Klein, Samuel, Sengupta, Debajyoti, Golling, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072325/ https://www.ncbi.nlm.nih.gov/pubmed/37025653 http://dx.doi.org/10.3389/fdata.2023.899345 |
Ejemplares similares
-
“Broadcast your gender.” A comparison of four text-based classification methods of German YouTube channels
por: Seewann, Lena, et al.
Publicado: (2022) -
What Do You Think About Your Company’s Leaks? A Survey on End-Users Perception Toward Data Leakage Mechanisms
por: Bertrand, Yoann, et al.
Publicado: (2020) -
3D bi-directional transformer U-Net for medical image segmentation
por: Fu, Xiyao, et al.
Publicado: (2023) -
COVID-19 as a Research Dynamic Transformer: Emerging Cross-Disciplinary and National Characteristics
por: Ohniwa, Ryosuke L., et al.
Publicado: (2021) -
A solution and practice for combining multi-source heterogeneous data to construct enterprise knowledge graph
por: Yan, Chenwei, et al.
Publicado: (2023)