Cargando…
Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study
BACKGROUND: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compar...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072853/ https://www.ncbi.nlm.nih.gov/pubmed/37034358 http://dx.doi.org/10.1016/j.eclinm.2023.101932 |
_version_ | 1785019470624849920 |
---|---|
author | Voss, Erica A. Shoaibi, Azza Yin Hui Lai, Lana Blacketer, Clair Alshammari, Thamir Makadia, Rupa Haynes, Kevin Sena, Anthony G. Rao, Gowtham van Sandijk, Sebastiaan Fraboulet, Clement Boyer, Laurent Le Carrour, Tanguy Horban, Scott Morales, Daniel R. Martínez Roldán, Jordi Ramírez-Anguita, Juan Manuel Mayer, Miguel A. de Wilde, Marcel John, Luis H. Duarte-Salles, Talita Roel, Elena Pistillo, Andrea Kolde, Raivo Maljković, Filip Denaxas, Spiros Papez, Vaclav Kahn, Michael G. Natarajan, Karthik Reich, Christian Secora, Alex Minty, Evan P. Shah, Nigam H. Posada, Jose D. Garcia Morales, Maria Teresa Bosca, Diego Cadenas Juanino, Honorio Diaz Holgado, Antonio Pedrera Jiménez, Miguel Serrano Balazote, Pablo García Barrio, Noelia Şen, Selçuk Üresin, Ali Yağız Erdogan, Baris Belmans, Luc Byttebier, Geert Malbrain, Manu L.N.G. Dedman, Daniel J. Cuccu, Zara Vashisht, Rohit Butte, Atul J. Patel, Ayan Dahm, Lisa Han, Cora Bu, Fan Arshad, Faaizah Ostropolets, Anna Nyberg, Fredrik Hripcsak, George Suchard, Marc A. Prieto-Alhambra, Dani Rijnbeek, Peter R. Schuemie, Martijn J. Ryan, Patrick B. |
author_facet | Voss, Erica A. Shoaibi, Azza Yin Hui Lai, Lana Blacketer, Clair Alshammari, Thamir Makadia, Rupa Haynes, Kevin Sena, Anthony G. Rao, Gowtham van Sandijk, Sebastiaan Fraboulet, Clement Boyer, Laurent Le Carrour, Tanguy Horban, Scott Morales, Daniel R. Martínez Roldán, Jordi Ramírez-Anguita, Juan Manuel Mayer, Miguel A. de Wilde, Marcel John, Luis H. Duarte-Salles, Talita Roel, Elena Pistillo, Andrea Kolde, Raivo Maljković, Filip Denaxas, Spiros Papez, Vaclav Kahn, Michael G. Natarajan, Karthik Reich, Christian Secora, Alex Minty, Evan P. Shah, Nigam H. Posada, Jose D. Garcia Morales, Maria Teresa Bosca, Diego Cadenas Juanino, Honorio Diaz Holgado, Antonio Pedrera Jiménez, Miguel Serrano Balazote, Pablo García Barrio, Noelia Şen, Selçuk Üresin, Ali Yağız Erdogan, Baris Belmans, Luc Byttebier, Geert Malbrain, Manu L.N.G. Dedman, Daniel J. Cuccu, Zara Vashisht, Rohit Butte, Atul J. Patel, Ayan Dahm, Lisa Han, Cora Bu, Fan Arshad, Faaizah Ostropolets, Anna Nyberg, Fredrik Hripcsak, George Suchard, Marc A. Prieto-Alhambra, Dani Rijnbeek, Peter R. Schuemie, Martijn J. Ryan, Patrick B. |
author_sort | Voss, Erica A. |
collection | PubMed |
description | BACKGROUND: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. METHODS: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. FINDINGS: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. INTERPRETATION: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. FUNDING: None. |
format | Online Article Text |
id | pubmed-10072853 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-100728532023-04-05 Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study Voss, Erica A. Shoaibi, Azza Yin Hui Lai, Lana Blacketer, Clair Alshammari, Thamir Makadia, Rupa Haynes, Kevin Sena, Anthony G. Rao, Gowtham van Sandijk, Sebastiaan Fraboulet, Clement Boyer, Laurent Le Carrour, Tanguy Horban, Scott Morales, Daniel R. Martínez Roldán, Jordi Ramírez-Anguita, Juan Manuel Mayer, Miguel A. de Wilde, Marcel John, Luis H. Duarte-Salles, Talita Roel, Elena Pistillo, Andrea Kolde, Raivo Maljković, Filip Denaxas, Spiros Papez, Vaclav Kahn, Michael G. Natarajan, Karthik Reich, Christian Secora, Alex Minty, Evan P. Shah, Nigam H. Posada, Jose D. Garcia Morales, Maria Teresa Bosca, Diego Cadenas Juanino, Honorio Diaz Holgado, Antonio Pedrera Jiménez, Miguel Serrano Balazote, Pablo García Barrio, Noelia Şen, Selçuk Üresin, Ali Yağız Erdogan, Baris Belmans, Luc Byttebier, Geert Malbrain, Manu L.N.G. Dedman, Daniel J. Cuccu, Zara Vashisht, Rohit Butte, Atul J. Patel, Ayan Dahm, Lisa Han, Cora Bu, Fan Arshad, Faaizah Ostropolets, Anna Nyberg, Fredrik Hripcsak, George Suchard, Marc A. Prieto-Alhambra, Dani Rijnbeek, Peter R. Schuemie, Martijn J. Ryan, Patrick B. eClinicalMedicine Articles BACKGROUND: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. METHODS: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. FINDINGS: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. INTERPRETATION: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. FUNDING: None. Elsevier 2023-04-04 /pmc/articles/PMC10072853/ /pubmed/37034358 http://dx.doi.org/10.1016/j.eclinm.2023.101932 Text en © 2023 The Author(s) |
spellingShingle | Articles Voss, Erica A. Shoaibi, Azza Yin Hui Lai, Lana Blacketer, Clair Alshammari, Thamir Makadia, Rupa Haynes, Kevin Sena, Anthony G. Rao, Gowtham van Sandijk, Sebastiaan Fraboulet, Clement Boyer, Laurent Le Carrour, Tanguy Horban, Scott Morales, Daniel R. Martínez Roldán, Jordi Ramírez-Anguita, Juan Manuel Mayer, Miguel A. de Wilde, Marcel John, Luis H. Duarte-Salles, Talita Roel, Elena Pistillo, Andrea Kolde, Raivo Maljković, Filip Denaxas, Spiros Papez, Vaclav Kahn, Michael G. Natarajan, Karthik Reich, Christian Secora, Alex Minty, Evan P. Shah, Nigam H. Posada, Jose D. Garcia Morales, Maria Teresa Bosca, Diego Cadenas Juanino, Honorio Diaz Holgado, Antonio Pedrera Jiménez, Miguel Serrano Balazote, Pablo García Barrio, Noelia Şen, Selçuk Üresin, Ali Yağız Erdogan, Baris Belmans, Luc Byttebier, Geert Malbrain, Manu L.N.G. Dedman, Daniel J. Cuccu, Zara Vashisht, Rohit Butte, Atul J. Patel, Ayan Dahm, Lisa Han, Cora Bu, Fan Arshad, Faaizah Ostropolets, Anna Nyberg, Fredrik Hripcsak, George Suchard, Marc A. Prieto-Alhambra, Dani Rijnbeek, Peter R. Schuemie, Martijn J. Ryan, Patrick B. Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study |
title | Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study |
title_full | Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study |
title_fullStr | Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study |
title_full_unstemmed | Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study |
title_short | Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study |
title_sort | contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with covid-19 across 26 databases: a multinational retrospective cohort study |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072853/ https://www.ncbi.nlm.nih.gov/pubmed/37034358 http://dx.doi.org/10.1016/j.eclinm.2023.101932 |
work_keys_str_mv | AT vossericaa contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT shoaibiazza contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT yinhuilailana contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT blacketerclair contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT alshammarithamir contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT makadiarupa contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT hayneskevin contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT senaanthonyg contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT raogowtham contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT vansandijksebastiaan contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT frabouletclement contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT boyerlaurent contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT lecarrourtanguy contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT horbanscott contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT moralesdanielr contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT martinezroldanjordi contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT ramirezanguitajuanmanuel contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT mayermiguela contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT dewildemarcel contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT johnluish contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT duartesallestalita contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT roelelena contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT pistilloandrea contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT kolderaivo contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT maljkovicfilip contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT denaxasspiros contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT papezvaclav contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT kahnmichaelg contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT natarajankarthik contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT reichchristian contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT secoraalex contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT mintyevanp contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT shahnigamh contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT posadajosed contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT garciamoralesmariateresa contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT boscadiego contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT cadenasjuaninohonorio contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT diazholgadoantonio contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT pedrerajimenezmiguel contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT serranobalazotepablo contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT garciabarrionoelia contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT senselcuk contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT uresinaliyagız contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT erdoganbaris contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT belmansluc contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT byttebiergeert contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT malbrainmanulng contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT dedmandanielj contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT cuccuzara contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT vashishtrohit contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT butteatulj contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT patelayan contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT dahmlisa contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT hancora contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT bufan contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT arshadfaaizah contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT ostropoletsanna contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT nybergfredrik contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT hripcsakgeorge contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT suchardmarca contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT prietoalhambradani contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT rijnbeekpeterr contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT schuemiemartijnj contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy AT ryanpatrickb contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy |