Cargando…

Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study

BACKGROUND: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compar...

Descripción completa

Detalles Bibliográficos
Autores principales: Voss, Erica A., Shoaibi, Azza, Yin Hui Lai, Lana, Blacketer, Clair, Alshammari, Thamir, Makadia, Rupa, Haynes, Kevin, Sena, Anthony G., Rao, Gowtham, van Sandijk, Sebastiaan, Fraboulet, Clement, Boyer, Laurent, Le Carrour, Tanguy, Horban, Scott, Morales, Daniel R., Martínez Roldán, Jordi, Ramírez-Anguita, Juan Manuel, Mayer, Miguel A., de Wilde, Marcel, John, Luis H., Duarte-Salles, Talita, Roel, Elena, Pistillo, Andrea, Kolde, Raivo, Maljković, Filip, Denaxas, Spiros, Papez, Vaclav, Kahn, Michael G., Natarajan, Karthik, Reich, Christian, Secora, Alex, Minty, Evan P., Shah, Nigam H., Posada, Jose D., Garcia Morales, Maria Teresa, Bosca, Diego, Cadenas Juanino, Honorio, Diaz Holgado, Antonio, Pedrera Jiménez, Miguel, Serrano Balazote, Pablo, García Barrio, Noelia, Şen, Selçuk, Üresin, Ali Yağız, Erdogan, Baris, Belmans, Luc, Byttebier, Geert, Malbrain, Manu L.N.G., Dedman, Daniel J., Cuccu, Zara, Vashisht, Rohit, Butte, Atul J., Patel, Ayan, Dahm, Lisa, Han, Cora, Bu, Fan, Arshad, Faaizah, Ostropolets, Anna, Nyberg, Fredrik, Hripcsak, George, Suchard, Marc A., Prieto-Alhambra, Dani, Rijnbeek, Peter R., Schuemie, Martijn J., Ryan, Patrick B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072853/
https://www.ncbi.nlm.nih.gov/pubmed/37034358
http://dx.doi.org/10.1016/j.eclinm.2023.101932
_version_ 1785019470624849920
author Voss, Erica A.
Shoaibi, Azza
Yin Hui Lai, Lana
Blacketer, Clair
Alshammari, Thamir
Makadia, Rupa
Haynes, Kevin
Sena, Anthony G.
Rao, Gowtham
van Sandijk, Sebastiaan
Fraboulet, Clement
Boyer, Laurent
Le Carrour, Tanguy
Horban, Scott
Morales, Daniel R.
Martínez Roldán, Jordi
Ramírez-Anguita, Juan Manuel
Mayer, Miguel A.
de Wilde, Marcel
John, Luis H.
Duarte-Salles, Talita
Roel, Elena
Pistillo, Andrea
Kolde, Raivo
Maljković, Filip
Denaxas, Spiros
Papez, Vaclav
Kahn, Michael G.
Natarajan, Karthik
Reich, Christian
Secora, Alex
Minty, Evan P.
Shah, Nigam H.
Posada, Jose D.
Garcia Morales, Maria Teresa
Bosca, Diego
Cadenas Juanino, Honorio
Diaz Holgado, Antonio
Pedrera Jiménez, Miguel
Serrano Balazote, Pablo
García Barrio, Noelia
Şen, Selçuk
Üresin, Ali Yağız
Erdogan, Baris
Belmans, Luc
Byttebier, Geert
Malbrain, Manu L.N.G.
Dedman, Daniel J.
Cuccu, Zara
Vashisht, Rohit
Butte, Atul J.
Patel, Ayan
Dahm, Lisa
Han, Cora
Bu, Fan
Arshad, Faaizah
Ostropolets, Anna
Nyberg, Fredrik
Hripcsak, George
Suchard, Marc A.
Prieto-Alhambra, Dani
Rijnbeek, Peter R.
Schuemie, Martijn J.
Ryan, Patrick B.
author_facet Voss, Erica A.
Shoaibi, Azza
Yin Hui Lai, Lana
Blacketer, Clair
Alshammari, Thamir
Makadia, Rupa
Haynes, Kevin
Sena, Anthony G.
Rao, Gowtham
van Sandijk, Sebastiaan
Fraboulet, Clement
Boyer, Laurent
Le Carrour, Tanguy
Horban, Scott
Morales, Daniel R.
Martínez Roldán, Jordi
Ramírez-Anguita, Juan Manuel
Mayer, Miguel A.
de Wilde, Marcel
John, Luis H.
Duarte-Salles, Talita
Roel, Elena
Pistillo, Andrea
Kolde, Raivo
Maljković, Filip
Denaxas, Spiros
Papez, Vaclav
Kahn, Michael G.
Natarajan, Karthik
Reich, Christian
Secora, Alex
Minty, Evan P.
Shah, Nigam H.
Posada, Jose D.
Garcia Morales, Maria Teresa
Bosca, Diego
Cadenas Juanino, Honorio
Diaz Holgado, Antonio
Pedrera Jiménez, Miguel
Serrano Balazote, Pablo
García Barrio, Noelia
Şen, Selçuk
Üresin, Ali Yağız
Erdogan, Baris
Belmans, Luc
Byttebier, Geert
Malbrain, Manu L.N.G.
Dedman, Daniel J.
Cuccu, Zara
Vashisht, Rohit
Butte, Atul J.
Patel, Ayan
Dahm, Lisa
Han, Cora
Bu, Fan
Arshad, Faaizah
Ostropolets, Anna
Nyberg, Fredrik
Hripcsak, George
Suchard, Marc A.
Prieto-Alhambra, Dani
Rijnbeek, Peter R.
Schuemie, Martijn J.
Ryan, Patrick B.
author_sort Voss, Erica A.
collection PubMed
description BACKGROUND: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. METHODS: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. FINDINGS: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. INTERPRETATION: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. FUNDING: None.
format Online
Article
Text
id pubmed-10072853
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-100728532023-04-05 Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study Voss, Erica A. Shoaibi, Azza Yin Hui Lai, Lana Blacketer, Clair Alshammari, Thamir Makadia, Rupa Haynes, Kevin Sena, Anthony G. Rao, Gowtham van Sandijk, Sebastiaan Fraboulet, Clement Boyer, Laurent Le Carrour, Tanguy Horban, Scott Morales, Daniel R. Martínez Roldán, Jordi Ramírez-Anguita, Juan Manuel Mayer, Miguel A. de Wilde, Marcel John, Luis H. Duarte-Salles, Talita Roel, Elena Pistillo, Andrea Kolde, Raivo Maljković, Filip Denaxas, Spiros Papez, Vaclav Kahn, Michael G. Natarajan, Karthik Reich, Christian Secora, Alex Minty, Evan P. Shah, Nigam H. Posada, Jose D. Garcia Morales, Maria Teresa Bosca, Diego Cadenas Juanino, Honorio Diaz Holgado, Antonio Pedrera Jiménez, Miguel Serrano Balazote, Pablo García Barrio, Noelia Şen, Selçuk Üresin, Ali Yağız Erdogan, Baris Belmans, Luc Byttebier, Geert Malbrain, Manu L.N.G. Dedman, Daniel J. Cuccu, Zara Vashisht, Rohit Butte, Atul J. Patel, Ayan Dahm, Lisa Han, Cora Bu, Fan Arshad, Faaizah Ostropolets, Anna Nyberg, Fredrik Hripcsak, George Suchard, Marc A. Prieto-Alhambra, Dani Rijnbeek, Peter R. Schuemie, Martijn J. Ryan, Patrick B. eClinicalMedicine Articles BACKGROUND: Adverse events of special interest (AESIs) were pre-specified to be monitored for the COVID-19 vaccines. Some AESIs are not only associated with the vaccines, but with COVID-19. Our aim was to characterise the incidence rates of AESIs following SARS-CoV-2 infection in patients and compare these to historical rates in the general population. METHODS: A multi-national cohort study with data from primary care, electronic health records, and insurance claims mapped to a common data model. This study's evidence was collected between Jan 1, 2017 and the conclusion of each database (which ranged from Jul 2020 to May 2022). The 16 pre-specified prevalent AESIs were: acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain- Barré syndrome, haemorrhagic stroke, non-haemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, transverse myelitis, and thrombosis with thrombocytopenia. Age-sex standardised incidence rate ratios (SIR) were estimated to compare post-COVID-19 to pre-pandemic rates in each of the databases. FINDINGS: Substantial heterogeneity by age was seen for AESI rates, with some clearly increasing with age but others following the opposite trend. Similarly, differences were also observed across databases for same health outcome and age-sex strata. All studied AESIs appeared consistently more common in the post-COVID-19 compared to the historical cohorts, with related meta-analytic SIRs ranging from 1.32 (1.05 to 1.66) for narcolepsy to 11.70 (10.10 to 13.70) for pulmonary embolism. INTERPRETATION: Our findings suggest all AESIs are more common after COVID-19 than in the general population. Thromboembolic events were particularly common, and over 10-fold more so. More research is needed to contextualise post-COVID-19 complications in the longer term. FUNDING: None. Elsevier 2023-04-04 /pmc/articles/PMC10072853/ /pubmed/37034358 http://dx.doi.org/10.1016/j.eclinm.2023.101932 Text en © 2023 The Author(s)
spellingShingle Articles
Voss, Erica A.
Shoaibi, Azza
Yin Hui Lai, Lana
Blacketer, Clair
Alshammari, Thamir
Makadia, Rupa
Haynes, Kevin
Sena, Anthony G.
Rao, Gowtham
van Sandijk, Sebastiaan
Fraboulet, Clement
Boyer, Laurent
Le Carrour, Tanguy
Horban, Scott
Morales, Daniel R.
Martínez Roldán, Jordi
Ramírez-Anguita, Juan Manuel
Mayer, Miguel A.
de Wilde, Marcel
John, Luis H.
Duarte-Salles, Talita
Roel, Elena
Pistillo, Andrea
Kolde, Raivo
Maljković, Filip
Denaxas, Spiros
Papez, Vaclav
Kahn, Michael G.
Natarajan, Karthik
Reich, Christian
Secora, Alex
Minty, Evan P.
Shah, Nigam H.
Posada, Jose D.
Garcia Morales, Maria Teresa
Bosca, Diego
Cadenas Juanino, Honorio
Diaz Holgado, Antonio
Pedrera Jiménez, Miguel
Serrano Balazote, Pablo
García Barrio, Noelia
Şen, Selçuk
Üresin, Ali Yağız
Erdogan, Baris
Belmans, Luc
Byttebier, Geert
Malbrain, Manu L.N.G.
Dedman, Daniel J.
Cuccu, Zara
Vashisht, Rohit
Butte, Atul J.
Patel, Ayan
Dahm, Lisa
Han, Cora
Bu, Fan
Arshad, Faaizah
Ostropolets, Anna
Nyberg, Fredrik
Hripcsak, George
Suchard, Marc A.
Prieto-Alhambra, Dani
Rijnbeek, Peter R.
Schuemie, Martijn J.
Ryan, Patrick B.
Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study
title Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study
title_full Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study
title_fullStr Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study
title_full_unstemmed Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study
title_short Contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with COVID-19 across 26 databases: a multinational retrospective cohort study
title_sort contextualising adverse events of special interest to characterise the baseline incidence rates in 24 million patients with covid-19 across 26 databases: a multinational retrospective cohort study
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072853/
https://www.ncbi.nlm.nih.gov/pubmed/37034358
http://dx.doi.org/10.1016/j.eclinm.2023.101932
work_keys_str_mv AT vossericaa contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT shoaibiazza contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT yinhuilailana contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT blacketerclair contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT alshammarithamir contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT makadiarupa contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT hayneskevin contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT senaanthonyg contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT raogowtham contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT vansandijksebastiaan contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT frabouletclement contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT boyerlaurent contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT lecarrourtanguy contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT horbanscott contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT moralesdanielr contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT martinezroldanjordi contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT ramirezanguitajuanmanuel contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT mayermiguela contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT dewildemarcel contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT johnluish contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT duartesallestalita contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT roelelena contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT pistilloandrea contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT kolderaivo contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT maljkovicfilip contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT denaxasspiros contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT papezvaclav contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT kahnmichaelg contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT natarajankarthik contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT reichchristian contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT secoraalex contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT mintyevanp contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT shahnigamh contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT posadajosed contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT garciamoralesmariateresa contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT boscadiego contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT cadenasjuaninohonorio contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT diazholgadoantonio contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT pedrerajimenezmiguel contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT serranobalazotepablo contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT garciabarrionoelia contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT senselcuk contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT uresinaliyagız contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT erdoganbaris contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT belmansluc contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT byttebiergeert contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT malbrainmanulng contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT dedmandanielj contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT cuccuzara contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT vashishtrohit contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT butteatulj contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT patelayan contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT dahmlisa contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT hancora contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT bufan contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT arshadfaaizah contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT ostropoletsanna contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT nybergfredrik contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT hripcsakgeorge contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT suchardmarca contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT prietoalhambradani contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT rijnbeekpeterr contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT schuemiemartijnj contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy
AT ryanpatrickb contextualisingadverseeventsofspecialinteresttocharacterisethebaselineincidenceratesin24millionpatientswithcovid19across26databasesamultinationalretrospectivecohortstudy