Cargando…

A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla

In this letter, we evaluate antenna designs for ultra-high frequency and field (UHF) human brain magnetic resonance imaging (MRI) at 10.5 tesla (T). Although MRI at such UHF is expected to provide major signal-to-noise gains, the frequency of interest, 447 MHz, presents us with challenges regarding...

Descripción completa

Detalles Bibliográficos
Autores principales: Woo, Myung Kyun, DelaBarre, Lance, Waks, Matt, Lagore, Russell, Radder, Jerahmie, Jungst, Steve, Kang, Chang-Ki, Ugurbil, Kamil, Adriany, Gregor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072856/
https://www.ncbi.nlm.nih.gov/pubmed/37020750
http://dx.doi.org/10.1109/lawp.2022.3183206
_version_ 1785019470882799616
author Woo, Myung Kyun
DelaBarre, Lance
Waks, Matt
Lagore, Russell
Radder, Jerahmie
Jungst, Steve
Kang, Chang-Ki
Ugurbil, Kamil
Adriany, Gregor
author_facet Woo, Myung Kyun
DelaBarre, Lance
Waks, Matt
Lagore, Russell
Radder, Jerahmie
Jungst, Steve
Kang, Chang-Ki
Ugurbil, Kamil
Adriany, Gregor
author_sort Woo, Myung Kyun
collection PubMed
description In this letter, we evaluate antenna designs for ultra-high frequency and field (UHF) human brain magnetic resonance imaging (MRI) at 10.5 tesla (T). Although MRI at such UHF is expected to provide major signal-to-noise gains, the frequency of interest, 447 MHz, presents us with challenges regarding improved B(1)(+) efficiency, image homogeneity, specific absorption rate (SAR), and antenna element decoupling for array configurations. To address these challenges, we propose the use of both monopole and dipole antennas in a novel hybrid configuration, which we refer to as a mono-dipole hybrid antenna (MDH) array. Compared to an 8-channel dipole antenna array of the same dimensions, the 8-channel MDH array showed an improvement in decoupling between adjacent array channels, as well as ~18% higher B(1)(+) and SAR efficiency near the central region of the phantom based on simulation and experiment. However, the performances of the MDH and dipole antenna arrays were overall similar when evaluating a human model in terms of peak B(1)(+) efficiency, 10 g SAR, and SAR efficiency. Finally, the concept of an MDH array showed an advantage in improved decoupling, SAR, and B(1)(+) near the superior region of the brain for human brain imaging.
format Online
Article
Text
id pubmed-10072856
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-100728562023-04-04 A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla Woo, Myung Kyun DelaBarre, Lance Waks, Matt Lagore, Russell Radder, Jerahmie Jungst, Steve Kang, Chang-Ki Ugurbil, Kamil Adriany, Gregor IEEE Antennas Wirel Propag Lett Article In this letter, we evaluate antenna designs for ultra-high frequency and field (UHF) human brain magnetic resonance imaging (MRI) at 10.5 tesla (T). Although MRI at such UHF is expected to provide major signal-to-noise gains, the frequency of interest, 447 MHz, presents us with challenges regarding improved B(1)(+) efficiency, image homogeneity, specific absorption rate (SAR), and antenna element decoupling for array configurations. To address these challenges, we propose the use of both monopole and dipole antennas in a novel hybrid configuration, which we refer to as a mono-dipole hybrid antenna (MDH) array. Compared to an 8-channel dipole antenna array of the same dimensions, the 8-channel MDH array showed an improvement in decoupling between adjacent array channels, as well as ~18% higher B(1)(+) and SAR efficiency near the central region of the phantom based on simulation and experiment. However, the performances of the MDH and dipole antenna arrays were overall similar when evaluating a human model in terms of peak B(1)(+) efficiency, 10 g SAR, and SAR efficiency. Finally, the concept of an MDH array showed an advantage in improved decoupling, SAR, and B(1)(+) near the superior region of the brain for human brain imaging. 2022-09 2022-06-15 /pmc/articles/PMC10072856/ /pubmed/37020750 http://dx.doi.org/10.1109/lawp.2022.3183206 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Woo, Myung Kyun
DelaBarre, Lance
Waks, Matt
Lagore, Russell
Radder, Jerahmie
Jungst, Steve
Kang, Chang-Ki
Ugurbil, Kamil
Adriany, Gregor
A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla
title A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla
title_full A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla
title_fullStr A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla
title_full_unstemmed A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla
title_short A Monopole and Dipole Hybrid Antenna Array for Human Brain Imaging at 10.5 Tesla
title_sort monopole and dipole hybrid antenna array for human brain imaging at 10.5 tesla
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072856/
https://www.ncbi.nlm.nih.gov/pubmed/37020750
http://dx.doi.org/10.1109/lawp.2022.3183206
work_keys_str_mv AT woomyungkyun amonopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT delabarrelance amonopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT waksmatt amonopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT lagorerussell amonopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT radderjerahmie amonopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT jungststeve amonopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT kangchangki amonopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT ugurbilkamil amonopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT adrianygregor amonopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT woomyungkyun monopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT delabarrelance monopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT waksmatt monopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT lagorerussell monopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT radderjerahmie monopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT jungststeve monopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT kangchangki monopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT ugurbilkamil monopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla
AT adrianygregor monopoleanddipolehybridantennaarrayforhumanbrainimagingat105tesla