Cargando…

Circulating metabolites as potential biomarkers for the early detection and prognosis surveillance of gastrointestinal cancers

BACKGROUND AND AIMS: Two of the most lethal gastrointestinal (GI) cancers, gastric cancer (GC) and colon cancer (CC), are ranked in the top five cancers that cause deaths worldwide. Most GI cancer deaths can be reduced by earlier detection and more appropriate medical treatment. Unlike the current “...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Guodong, Wang, Li, Tang, Junlong, Li, Haohui, Pang, Shuyu, Li, Yan, Liu, Li, Hu, Junyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073066/
https://www.ncbi.nlm.nih.gov/pubmed/37014438
http://dx.doi.org/10.1007/s11306-023-02002-0
Descripción
Sumario:BACKGROUND AND AIMS: Two of the most lethal gastrointestinal (GI) cancers, gastric cancer (GC) and colon cancer (CC), are ranked in the top five cancers that cause deaths worldwide. Most GI cancer deaths can be reduced by earlier detection and more appropriate medical treatment. Unlike the current “gold standard” techniques, non-invasive and highly sensitive screening tests are required for GI cancer diagnosis. Here, we explored the potential of metabolomics for GI cancer detection and the classification of tissue-of-origin, and even the prognosis management. METHODS: Plasma samples from 37 gastric cancer (GC), 17 colon cancer (CC), and 27 non-cancer (NC) patients were prepared for metabolomics and lipidomics analysis by three MS-based platforms. Univariate, multivariate, and clustering analyses were used for selecting significant metabolic features. ROC curve analysis was based on a series of different binary classifications as well as the true-positive rate (sensitivity) and the false-positive rate (1-specificity). RESULTS: GI cancers exhibited obvious metabolic perturbation compared with benign diseases. The differentiated metabolites of gastric cancer (GC) and colon cancer (CC) were targeted to same pathways but with different degrees of cellular metabolism reprogramming. The cancer-specific metabolites distinguished the malignant and benign, and classified the cancer types. We also applied this test to before- and after-surgery samples, wherein surgical resection significantly altered the blood-metabolic patterns. There were 15 metabolites significantly altered in GC and CC patients who underwent surgical treatment, and partly returned to normal conditions. CONCLUSION: Blood-based metabolomics analysis is an efficient strategy for GI cancer screening, especially for malignant and benign diagnoses. The cancer-specific metabolic patterns process the potential for classifying tissue-of-origin in multi-cancer screening. Besides, the circulating metabolites for prognosis management of GI cancer is a promising area of research. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11306-023-02002-0.