Cargando…
Recursive computed ABC (cABC) analysis as a precise method for reducing machine learning based feature sets to their minimum informative size
Selecting the k best features is a common task in machine learning. Typically, a few features have high importance, but many have low importance (right-skewed distribution). This report proposes a numerically precise method to address this skewed feature importance distribution in order to reduce a...
Autores principales: | Lötsch, Jörn, Ultsch, Alfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073099/ https://www.ncbi.nlm.nih.gov/pubmed/37016033 http://dx.doi.org/10.1038/s41598-023-32396-9 |
Ejemplares similares
-
Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data
por: Ultsch, Alfred, et al.
Publicado: (2015) -
Machine learning in pain research
por: Lötsch, Jörn, et al.
Publicado: (2018) -
Machine-learned cluster identification in high-dimensional data
por: Ultsch, Alfred, et al.
Publicado: (2017) -
A non-parametric effect-size measure capturing changes in central tendency and data distribution shape
por: Lötsch, Jörn, et al.
Publicado: (2020) -
Current Projection Methods-Induced Biases at Subgroup Detection for Machine-Learning Based Data-Analysis of Biomedical Data
por: Lötsch, Jörn, et al.
Publicado: (2019)