Cargando…
Predicting patient decompensation from continuous physiologic monitoring in the emergency department
Anticipation of clinical decompensation is essential for effective emergency and critical care. In this study, we develop a multimodal machine learning approach to predict the onset of new vital sign abnormalities (tachycardia, hypotension, hypoxia) in ED patients with normal initial vital signs. Ou...
Autores principales: | Sundrani, Sameer, Chen, Julie, Jin, Boyang Tom, Abad, Zahra Shakeri Hossein, Rajpurkar, Pranav, Kim, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073111/ https://www.ncbi.nlm.nih.gov/pubmed/37016152 http://dx.doi.org/10.1038/s41746-023-00803-0 |
Ejemplares similares
-
Development and Comparative Performance of Physiologic Monitoring Strategies in the Emergency Department
por: Kim, David, et al.
Publicado: (2022) -
Impact of emergency department‐based intensive care unit on outcomes of decompensating boarding emergency department patients
por: Doan, Jessica, et al.
Publicado: (2023) -
Acute decompensated heart failure in the emergency department: Identification of early predictors of outcome
por: Castello, Luigi Mario, et al.
Publicado: (2017) -
Rate of Decompensation of Normoxic Emergency Department Patients with SARS-CoV-2
por: Schreyer, Kraftin E., et al.
Publicado: (2021) -
The Usefulness of the Delta Neutrophil Index for Predicting Superimposed Pneumonia in Patients with Acute Decompensated Heart Failure in the Emergency Department
por: Cha, Yong Sung, et al.
Publicado: (2016)