Cargando…
Rashba effect on finite temperature magnetotransport in a dissipative quantum dot transistor with electronic and polaronic interactions
The Rashba spin–orbit coupling induced quantum transport through a quantum dot embedded in a two-arm quantum loop of a quantum dot transistor is studied at finite temperature in the presence of electron–phonon and Hubbard interactions, an external magnetic field and quantum dissipation. The Anderson...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073154/ https://www.ncbi.nlm.nih.gov/pubmed/37016149 http://dx.doi.org/10.1038/s41598-023-32750-x |
Sumario: | The Rashba spin–orbit coupling induced quantum transport through a quantum dot embedded in a two-arm quantum loop of a quantum dot transistor is studied at finite temperature in the presence of electron–phonon and Hubbard interactions, an external magnetic field and quantum dissipation. The Anderson-Holstein-Caldeira-Leggett-Rashba model is used to describe the system and several unitary transformations are employed to decouple some of the interactions and the transport properties are calculated using the Keldysh technique. It is shown that the Rashba coupling alone separates the spin-up and spin-down currents causing zero-field spin-polarization. The gap between the up and down-spin currents and conductances can be changed by tuning the Rashba strength. In the absence of a field, the spin-up and spin-down currents show an opposite behaviour with respect to spin–orbit interaction phase. The spin-polarization increases with increasing electron–phonon interaction at zero magnetic field. In the presence of a magnetic field, the tunneling conductance and spin-polarization change differently with the polaronic interaction, spin–orbit interaction and dissipation in different temperature regimes. This study predicts that for a given Rashba strength and magnetic field, the maximum spin-polarization in a quantum dot based device occurs at zero temperature. |
---|