Cargando…
Large subsets of [Formula: see text] without arithmetic progressions
For integers m and n, we study the problem of finding good lower bounds for the size of progression-free sets in [Formula: see text] . Let [Formula: see text] denote the maximal size of a subset of [Formula: see text] without arithmetic progressions of length k and let [Formula: see text] denote the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073169/ https://www.ncbi.nlm.nih.gov/pubmed/37035093 http://dx.doi.org/10.1007/s10623-022-01145-w |
Sumario: | For integers m and n, we study the problem of finding good lower bounds for the size of progression-free sets in [Formula: see text] . Let [Formula: see text] denote the maximal size of a subset of [Formula: see text] without arithmetic progressions of length k and let [Formula: see text] denote the least prime factor of m. We construct explicit progression-free sets and obtain the following improved lower bounds for [Formula: see text] : If [Formula: see text] is odd and [Formula: see text] , then [Formula: see text] If [Formula: see text] is even, [Formula: see text] and [Formula: see text] , then [Formula: see text] Moreover, we give some further improved lower bounds on [Formula: see text] for primes [Formula: see text] and progression lengths [Formula: see text] . |
---|