Cargando…
Elasto-plastic analysis and optimal design of composite integral abutment bridge extended with limited residual plastic deformation
Due to the growing significance of structural theories concerning the composite structure analysed and designed plastically, this paper introduces a new optimisation method for controlling the plastic behaviour of a full-scale composite integral abutment bridge by employing complementary strain ener...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073228/ https://www.ncbi.nlm.nih.gov/pubmed/37015989 http://dx.doi.org/10.1038/s41598-023-32787-y |
_version_ | 1785019545485836288 |
---|---|
author | Rad, Majid M. Papp, Ferenc Ibrahim, Sarah K. Szép, János Gosztola, Dániel Harrach, Dániel |
author_facet | Rad, Majid M. Papp, Ferenc Ibrahim, Sarah K. Szép, János Gosztola, Dániel Harrach, Dániel |
author_sort | Rad, Majid M. |
collection | PubMed |
description | Due to the growing significance of structural theories concerning the composite structure analysed and designed plastically, this paper introduces a new optimisation method for controlling the plastic behaviour of a full-scale composite integral abutment bridge by employing complementary strain energy of residual forces that existed within the reinforcing rebars. Composite bridges are structures made of components such as steel and concrete, which are frequent and cost-effective building methods. Thus, various objective functions were used in this work when applying optimum elasto-plastic analysing and designing the composite integrated bridge structure that was tested experimentally in the laboratory. In contrast, the plastic deformations were constrained by restricting the complementary strain energy of the residual internal forces aiming to find the maximum applied load and the minimum number of steel bars used to reinforce the concrete column part of the structure. The numerical model employed in this paper was validated and calibrated using experimental results, which were considered inside ABAQUS to produce the validated numerical model, using concrete damage plasticity (CDP) constitutive model and concrete data from laboratory testing to solve the nonlinear programming code provided by the authors. This paper presents a novel optimization method using complementary strain energy to control the plastic behaviour of a full-scale composite integral abutment bridge, with the original contribution being the incorporation of residual forces within reinforcing rebars to limit plastic deformations. Following that, a parametric investigation of the various optimisation problems revealed how models performed variously under different complementary strain energy values, which influenced the general behaviour of the structure as it transitioned from elastic to elasto-plastic to plastic; also results showed how the complementary strain energy value is connected with the amount of damaged accrued in both concrete and steel. |
format | Online Article Text |
id | pubmed-10073228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-100732282023-04-06 Elasto-plastic analysis and optimal design of composite integral abutment bridge extended with limited residual plastic deformation Rad, Majid M. Papp, Ferenc Ibrahim, Sarah K. Szép, János Gosztola, Dániel Harrach, Dániel Sci Rep Article Due to the growing significance of structural theories concerning the composite structure analysed and designed plastically, this paper introduces a new optimisation method for controlling the plastic behaviour of a full-scale composite integral abutment bridge by employing complementary strain energy of residual forces that existed within the reinforcing rebars. Composite bridges are structures made of components such as steel and concrete, which are frequent and cost-effective building methods. Thus, various objective functions were used in this work when applying optimum elasto-plastic analysing and designing the composite integrated bridge structure that was tested experimentally in the laboratory. In contrast, the plastic deformations were constrained by restricting the complementary strain energy of the residual internal forces aiming to find the maximum applied load and the minimum number of steel bars used to reinforce the concrete column part of the structure. The numerical model employed in this paper was validated and calibrated using experimental results, which were considered inside ABAQUS to produce the validated numerical model, using concrete damage plasticity (CDP) constitutive model and concrete data from laboratory testing to solve the nonlinear programming code provided by the authors. This paper presents a novel optimization method using complementary strain energy to control the plastic behaviour of a full-scale composite integral abutment bridge, with the original contribution being the incorporation of residual forces within reinforcing rebars to limit plastic deformations. Following that, a parametric investigation of the various optimisation problems revealed how models performed variously under different complementary strain energy values, which influenced the general behaviour of the structure as it transitioned from elastic to elasto-plastic to plastic; also results showed how the complementary strain energy value is connected with the amount of damaged accrued in both concrete and steel. Nature Publishing Group UK 2023-04-04 /pmc/articles/PMC10073228/ /pubmed/37015989 http://dx.doi.org/10.1038/s41598-023-32787-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Rad, Majid M. Papp, Ferenc Ibrahim, Sarah K. Szép, János Gosztola, Dániel Harrach, Dániel Elasto-plastic analysis and optimal design of composite integral abutment bridge extended with limited residual plastic deformation |
title | Elasto-plastic analysis and optimal design of composite integral abutment bridge extended with limited residual plastic deformation |
title_full | Elasto-plastic analysis and optimal design of composite integral abutment bridge extended with limited residual plastic deformation |
title_fullStr | Elasto-plastic analysis and optimal design of composite integral abutment bridge extended with limited residual plastic deformation |
title_full_unstemmed | Elasto-plastic analysis and optimal design of composite integral abutment bridge extended with limited residual plastic deformation |
title_short | Elasto-plastic analysis and optimal design of composite integral abutment bridge extended with limited residual plastic deformation |
title_sort | elasto-plastic analysis and optimal design of composite integral abutment bridge extended with limited residual plastic deformation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073228/ https://www.ncbi.nlm.nih.gov/pubmed/37015989 http://dx.doi.org/10.1038/s41598-023-32787-y |
work_keys_str_mv | AT radmajidm elastoplasticanalysisandoptimaldesignofcompositeintegralabutmentbridgeextendedwithlimitedresidualplasticdeformation AT pappferenc elastoplasticanalysisandoptimaldesignofcompositeintegralabutmentbridgeextendedwithlimitedresidualplasticdeformation AT ibrahimsarahk elastoplasticanalysisandoptimaldesignofcompositeintegralabutmentbridgeextendedwithlimitedresidualplasticdeformation AT szepjanos elastoplasticanalysisandoptimaldesignofcompositeintegralabutmentbridgeextendedwithlimitedresidualplasticdeformation AT gosztoladaniel elastoplasticanalysisandoptimaldesignofcompositeintegralabutmentbridgeextendedwithlimitedresidualplasticdeformation AT harrachdaniel elastoplasticanalysisandoptimaldesignofcompositeintegralabutmentbridgeextendedwithlimitedresidualplasticdeformation |