Cargando…
A survey on multi-objective recommender systems
Recommender systems can be characterized as software solutions that provide users with convenient access to relevant content. Traditionally, recommender systems research predominantly focuses on developing machine learning algorithms that aim to predict which content is relevant for individual users...
Autores principales: | Jannach, Dietmar, Abdollahpouri, Himan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073543/ https://www.ncbi.nlm.nih.gov/pubmed/37034435 http://dx.doi.org/10.3389/fdata.2023.1157899 |
Ejemplares similares
-
Multi-list interfaces for recommender systems: survey and future directions
por: Loepp, Benedikt
Publicado: (2023) -
PME: pruning-based multi-size embedding for recommender systems
por: Liu, Zirui, et al.
Publicado: (2023) -
Attribute-Aware Recommender System Based on Collaborative Filtering: Survey and Classification
por: Chen, Wen-Hao, et al.
Publicado: (2020) -
Multi-objective cluster based bidding algorithm for E-commerce search engine marketing system
por: Jie, Cheng, et al.
Publicado: (2022) -
Recommender systems for sustainability: overview and research issues
por: Felfernig, Alexander, et al.
Publicado: (2023)