Cargando…
A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing
The ever-increasing number of materials science articles makes it hard to infer chemistry-structure-property relations from literature. We used natural language processing methods to automatically extract material property data from the abstracts of polymer literature. As a component of our pipeline...
Autores principales: | Shetty, Pranav, Rajan, Arunkumar Chitteth, Kuenneth, Chris, Gupta, Sonakshi, Panchumarti, Lakshmi Prerana, Holm, Lauren, Zhang, Chao, Ramprasad, Rampi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073792/ https://www.ncbi.nlm.nih.gov/pubmed/37033291 http://dx.doi.org/10.1038/s41524-023-01003-w |
Ejemplares similares
-
Polymer informatics with multi-task learning
por: Kuenneth, Christopher, et al.
Publicado: (2021) -
polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics
por: Kuenneth, Christopher, et al.
Publicado: (2023) -
Automated knowledge extraction from polymer literature using natural language processing
por: Shetty, Pranav, et al.
Publicado: (2020) -
Polymer Informatics
at Scale with Multitask Graph
Neural Networks
por: Gurnani, Rishi, et al.
Publicado: (2023) -
Low-temperature 3D printing of transparent silica glass microstructures
por: Li, Mingzhe, et al.
Publicado: (2023)