Cargando…
Predicting microsatellite instability and key biomarkers in colorectal cancer from H&E‐stained images: achieving state‐of‐the‐art predictive performance with fewer data using Swin Transformer
Many artificial intelligence models have been developed to predict clinically relevant biomarkers for colorectal cancer (CRC), including microsatellite instability (MSI). However, existing deep learning networks require large training datasets, which are often hard to obtain. In this study, based on...
Autores principales: | Guo, Bangwei, Li, Xingyu, Yang, Miaomiao, Jonnagaddala, Jitendra, Zhang, Hong, Xu, Xu Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073932/ https://www.ncbi.nlm.nih.gov/pubmed/36723384 http://dx.doi.org/10.1002/cjp2.312 |
Ejemplares similares
-
S-Swin Transformer: simplified Swin Transformer model for offline handwritten Chinese character recognition
por: Dan, Yongping, et al.
Publicado: (2022) -
SwinOCSR: end-to-end optical chemical structure recognition using a Swin Transformer
por: Xu, Zhanpeng, et al.
Publicado: (2022) -
FEA-Swin: Foreground Enhancement Attention Swin Transformer Network for Accurate UAV-Based Dense Object Detection
por: Xu, Wenyu, et al.
Publicado: (2022) -
Swin Transformer Improves the IDH Mutation Status Prediction of Gliomas Free of MRI-Based Tumor Segmentation
por: Wu, Jiangfen, et al.
Publicado: (2022) -
SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer
por: Jiang, Yun, et al.
Publicado: (2022)