Cargando…
TB-ML—a framework for comparing machine learning approaches to predict drug resistance of Mycobacterium tuberculosis
MOTIVATION: Machine learning (ML) has shown impressive performance in predicting antimicrobial resistance (AMR) from sequence data, including for Mycobacterium tuberculosis, the causative agent of tuberculosis. However, current ML development and publication practices make it difficult for researche...
Autores principales: | Libiseller-Egger, Julian, Wang, Linfeng, Deelder, Wouter, Campino, Susana, Clark, Taane G, Phelan, Jody E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074023/ https://www.ncbi.nlm.nih.gov/pubmed/37033466 http://dx.doi.org/10.1093/bioadv/vbad040 |
Ejemplares similares
-
Robust detection of point mutations involved in multidrug-resistant Mycobacterium tuberculosis in the presence of co-occurrent resistance markers
por: Libiseller-Egger, Julian, et al.
Publicado: (2020) -
Mixed infections in genotypic drug-resistant Mycobacterium tuberculosis
por: Wang, Linfeng, et al.
Publicado: (2023) -
A modified decision tree approach to improve the prediction and mutation discovery for drug resistance in Mycobacterium tuberculosis
por: Deelder, Wouter, et al.
Publicado: (2022) -
Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data
por: Deelder, Wouter, et al.
Publicado: (2019) -
PrimedRPA: primer design for recombinase polymerase amplification assays
por: Higgins, Matthew, et al.
Publicado: (2019)