Cargando…
Federated learning framework integrating REFINED CNN and Deep Regression Forests
SUMMARY: Predictive learning from medical data incurs additional challenge due to concerns over privacy and security of personal data. Federated learning, intentionally structured to preserve high level of privacy, is emerging to be an attractive way to generate cross-silo predictions in medical sce...
Autores principales: | Nolte, Daniel, Bazgir, Omid, Ghosh, Souparno, Pal, Ranadip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074025/ https://www.ncbi.nlm.nih.gov/pubmed/37033467 http://dx.doi.org/10.1093/bioadv/vbad036 |
Ejemplares similares
-
Investigation of REFINED CNN ensemble learning for anti-cancer drug sensitivity prediction
por: Bazgir, Omid, et al.
Publicado: (2021) -
REFINED-CNN framework for survival prediction with high-dimensional features
por: Bazgir, Omid, et al.
Publicado: (2023) -
Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks
por: Bazgir, Omid, et al.
Publicado: (2020) -
Heterogeneity Aware Random Forest for Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2017) -
Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction
por: Rahman, Raziur, et al.
Publicado: (2016)