Cargando…
Differential production rates of cytosolic and transmembrane GFP reporters in C. elegans L3 larval uterine cells
Transgene driven protein expression is an important tool for investigating developmental mechanisms in C. elegans . Here, we have assessed protein production rates and levels in L3 larval uterine cells (UCs). Using ubiquitous promoter driven cytosolic and transmembrane tethered GFP, fluorescence rec...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Caltech Library
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074172/ https://www.ncbi.nlm.nih.gov/pubmed/37033704 http://dx.doi.org/10.17912/micropub.biology.000813 |
Sumario: | Transgene driven protein expression is an important tool for investigating developmental mechanisms in C. elegans . Here, we have assessed protein production rates and levels in L3 larval uterine cells (UCs). Using ubiquitous promoter driven cytosolic and transmembrane tethered GFP, fluorescence recovery after photobleaching, and quantitative fluorescence analysis, we reveal that cytosolic GFP is produced at an ~two-fold higher rate than transmembrane tethered GFP and accumulates at ~five-fold higher levels in UCs. We also provide evidence that cytosolic GFP in the anchor cell, a specialized UC that mediates uterine-vulval connection, is more rapidly degraded through an autophagy-independent mechanism. |
---|