Cargando…
Analytical and Numerical Investigation of the SIR Mathematical Model
This is a theoretical study of the SIR model — a popular mathematical model of the propagation of infectious diseases. We construct a solution of the Cauchy problem for a system of two ordinary differential equations describing in integral form the concentration dynamics of infected and recovered in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074335/ http://dx.doi.org/10.1007/s10598-023-09572-7 |
Sumario: | This is a theoretical study of the SIR model — a popular mathematical model of the propagation of infectious diseases. We construct a solution of the Cauchy problem for a system of two ordinary differential equations describing in integral form the concentration dynamics of infected and recovered individuals in an immune population. A qualitative analysis is carried out of the stationary system states using the Lyapunov function. An expression is obtained for the coordinates of the equilibrium points in terms of the Lambert W-function for arbitrary initial values. The application of the SIR model for the description of COVID-19 propagation dynamic is demonstrated. |
---|