Cargando…
Fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects
The maintenance of robust ratiometric loading of dual therapeutic agents and fine-tuning release kinetics for consistent in vitro and in vivo optimization of combination effects is vital for discovering new anticancer drug combinations and remains challenging. Smart nanomedicine strategies have been...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074403/ https://www.ncbi.nlm.nih.gov/pubmed/37035705 http://dx.doi.org/10.1039/d3sc00550j |
_version_ | 1785019752692842496 |
---|---|
author | Zhong, Haiping Li, Xingwei Yu, Na Zhang, Xi Mu, Jingqing Liu, Tao Yuan, Bo Yuan, Xiaoyong Guo, Shutao |
author_facet | Zhong, Haiping Li, Xingwei Yu, Na Zhang, Xi Mu, Jingqing Liu, Tao Yuan, Bo Yuan, Xiaoyong Guo, Shutao |
author_sort | Zhong, Haiping |
collection | PubMed |
description | The maintenance of robust ratiometric loading of dual therapeutic agents and fine-tuning release kinetics for consistent in vitro and in vivo optimization of combination effects is vital for discovering new anticancer drug combinations and remains challenging. Smart nanomedicine strategies have been investigated for this purpose, but most of the reported strategies focus either on ratiometric delivery or on unimodal sequential release of the two different agents, which hampers effective optimization of combination effects. Herein we report a sequential drug release system based on nanoformulated mutual prodrugs constructed by the formation of ketal linkages with different acid sensitivities, thus enabling the acid-triggered release of two anticancer drugs, paclitaxel and gemcitabine, in various sequences. We found that in several cell lines, the sequence of drug release substantially affected the combination effects; specifically, in A549 cells, time-staggered release profiles showed enhanced synergistic effects relative to those of a simultaneous release profile. Moreover, in vivo assessment of the antitumor efficacy of the nanoformulations in A549 xenograft models indicated that the best therapeutic effects were obtained with time-staggered release profiles, which was consistent with the in vitro results. Our strategy for precisely controlled sequential drug release can be expected to facilitate the screening of optimal drug combinations and maximize combination effects both in vitro and in vivo. |
format | Online Article Text |
id | pubmed-10074403 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-100744032023-04-06 Fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects Zhong, Haiping Li, Xingwei Yu, Na Zhang, Xi Mu, Jingqing Liu, Tao Yuan, Bo Yuan, Xiaoyong Guo, Shutao Chem Sci Chemistry The maintenance of robust ratiometric loading of dual therapeutic agents and fine-tuning release kinetics for consistent in vitro and in vivo optimization of combination effects is vital for discovering new anticancer drug combinations and remains challenging. Smart nanomedicine strategies have been investigated for this purpose, but most of the reported strategies focus either on ratiometric delivery or on unimodal sequential release of the two different agents, which hampers effective optimization of combination effects. Herein we report a sequential drug release system based on nanoformulated mutual prodrugs constructed by the formation of ketal linkages with different acid sensitivities, thus enabling the acid-triggered release of two anticancer drugs, paclitaxel and gemcitabine, in various sequences. We found that in several cell lines, the sequence of drug release substantially affected the combination effects; specifically, in A549 cells, time-staggered release profiles showed enhanced synergistic effects relative to those of a simultaneous release profile. Moreover, in vivo assessment of the antitumor efficacy of the nanoformulations in A549 xenograft models indicated that the best therapeutic effects were obtained with time-staggered release profiles, which was consistent with the in vitro results. Our strategy for precisely controlled sequential drug release can be expected to facilitate the screening of optimal drug combinations and maximize combination effects both in vitro and in vivo. The Royal Society of Chemistry 2023-03-17 /pmc/articles/PMC10074403/ /pubmed/37035705 http://dx.doi.org/10.1039/d3sc00550j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Zhong, Haiping Li, Xingwei Yu, Na Zhang, Xi Mu, Jingqing Liu, Tao Yuan, Bo Yuan, Xiaoyong Guo, Shutao Fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects |
title | Fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects |
title_full | Fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects |
title_fullStr | Fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects |
title_full_unstemmed | Fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects |
title_short | Fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects |
title_sort | fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074403/ https://www.ncbi.nlm.nih.gov/pubmed/37035705 http://dx.doi.org/10.1039/d3sc00550j |
work_keys_str_mv | AT zhonghaiping finetuningthesequentialdrugreleaseofnanoformulatedmutualprodrugsdictatesthecombinationeffects AT lixingwei finetuningthesequentialdrugreleaseofnanoformulatedmutualprodrugsdictatesthecombinationeffects AT yuna finetuningthesequentialdrugreleaseofnanoformulatedmutualprodrugsdictatesthecombinationeffects AT zhangxi finetuningthesequentialdrugreleaseofnanoformulatedmutualprodrugsdictatesthecombinationeffects AT mujingqing finetuningthesequentialdrugreleaseofnanoformulatedmutualprodrugsdictatesthecombinationeffects AT liutao finetuningthesequentialdrugreleaseofnanoformulatedmutualprodrugsdictatesthecombinationeffects AT yuanbo finetuningthesequentialdrugreleaseofnanoformulatedmutualprodrugsdictatesthecombinationeffects AT yuanxiaoyong finetuningthesequentialdrugreleaseofnanoformulatedmutualprodrugsdictatesthecombinationeffects AT guoshutao finetuningthesequentialdrugreleaseofnanoformulatedmutualprodrugsdictatesthecombinationeffects |