Cargando…

Simplified cloning and isolation of peptides from “sandwiched” SUMO-peptide-intein fusion proteins

BACKGROUND: Some peptides are targets for degradation when heterologously expressed as fusion proteins in E. coli, which can limit yields after isolation and purification. We recently reported that peptide degradation may be prevented by production of a “sandwiched” SUMO-peptide-intein (SPI) fusion...

Descripción completa

Detalles Bibliográficos
Autores principales: Lamer, Tess, Vederas, John C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074672/
https://www.ncbi.nlm.nih.gov/pubmed/37020212
http://dx.doi.org/10.1186/s12896-023-00779-5
Descripción
Sumario:BACKGROUND: Some peptides are targets for degradation when heterologously expressed as fusion proteins in E. coli, which can limit yields after isolation and purification. We recently reported that peptide degradation may be prevented by production of a “sandwiched” SUMO-peptide-intein (SPI) fusion protein, which protects the target peptide sequence from truncation and improves yield. This initial system required cloning with two commercially available vectors. It used an N-terminal polyhistidine tagged small ubiquitin-like modifier (SUMO) protein and a C-terminal engineered Mycobacterium xenopii DNA Gyrase A intein with an inserted chitin binding domain (CBD) to create “sandwiched” fusion proteins of the form: His(6)-SUMO-peptide-intein-CBD. However, the major drawback of this previously reported fusion protein “sandwich” approach is the increased time and number of steps required to complete the cloning and isolation procedures, relative to the simple procedures to produce recombinant peptides in E. coli from a single (non-“sandwiched”) fusion protein system. RESULTS: In this work we generate the plasmid pSPIH6, which improves upon the previous system by encoding both the SUMO and intein proteins and allows facile construction of a SPI protein in a single cloning step. Additionally, the Mxe GyrA intein encoded in pSPIH6 contains a C-terminal polyhistidine tag, resulting in SPI fusion proteins of the form: His(6)-SUMO-peptide-intein-CBD-His(6). The dual polyhistidine tags greatly simplify isolation procedures compared to the original SPI system, which we have here demonstrated with two linear bacteriocin peptides: leucocin A and lactococcin A. The yields obtained for both peptides after purification were also improved compared to the previous SPI system as a result of this streamlined protocol. CONCLUSIONS: This modified SPI system and its simplified cloning and purification procedures described here may be generally useful as a heterologous E. coli expression system to obtain pure peptides in high yield, especially when degradation of the target peptide is an issue. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12896-023-00779-5.