Cargando…
Machine learning models based on clinical indices and cardiotocographic features for discriminating asphyxia fetuses—Porto retrospective intrapartum study
INTRODUCTION: Perinatal asphyxia is one of the most frequent causes of neonatal mortality, affecting approximately four million newborns worldwide each year and causing the death of one million individuals. One of the main reasons for these high incidences is the lack of consensual methods of early...
Autores principales: | Ribeiro, Maria, Nunes, Inês, Castro, Luísa, Costa-Santos, Cristina, S. Henriques, Teresa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074982/ https://www.ncbi.nlm.nih.gov/pubmed/37033082 http://dx.doi.org/10.3389/fpubh.2023.1099263 |
Ejemplares similares
-
Intrapartum cardiotocographic monitoring and its correlation with neonatal outcome
por: Singh, Suraj Kumar, et al.
Publicado: (2022) -
Complexity of Cardiotocographic Signals as A Predictor of Labor
por: Monteiro-Santos, João, et al.
Publicado: (2020) -
Clinical Validation of Mobile Cardiotocograph Device for Intrapartum and Antepartum Monitoring Compared to Standard Cardiotocograph: An Inter-Rater Agreement Study
por: Das, Manoja Kumar, et al.
Publicado: (2019) -
Systematic Review of Intrapartum Fetal Heart Rate Spectral Analysis and an Application in the Detection of Fetal Acidemia
por: Castro, Luísa, et al.
Publicado: (2021) -
Understanding the Full Spectrum of Organ Injury Following Intrapartum Asphyxia
por: LaRosa, Domenic A., et al.
Publicado: (2017)