Cargando…

Serine and arginine rich splicing factor 1: a potential target for neuroprotection and other diseases

Alternative splicing is the process of producing variably spliced mRNAs by choosing distinct combinations of splice sites within a messenger RNA precursor. This splicing enables mRNA from a single gene to synthesize different proteins, which have different cellular properties and functions and yet a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sandoval-Castellanos, Ana M., Bhargava, Anushka, Zhao, Min, Xu, Jun, Ning, Ke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10075106/
https://www.ncbi.nlm.nih.gov/pubmed/36571335
http://dx.doi.org/10.4103/1673-5374.360243
Descripción
Sumario:Alternative splicing is the process of producing variably spliced mRNAs by choosing distinct combinations of splice sites within a messenger RNA precursor. This splicing enables mRNA from a single gene to synthesize different proteins, which have different cellular properties and functions and yet arise from the same single gene. A family of splicing factors, Serine-arginine rich proteins, are needed to initiate the assembly and activation of the spliceosome. Serine and arginine rich splicing factor 1, part of the arginine/serine-rich splicing factor protein family, can either activate or inhibit the splicing of mRNAs, depending on the phosphorylation status of the protein and its interaction partners. Considering that serine and arginine rich splicing factor 1 is either an activator or an inhibitor, this protein has been studied widely to identify its various roles in different diseases. Research has found that serine and arginine rich splicing factor 1 is a key target for neuroprotection, showing its promising potential use in therapeutics for neurodegenerative disorders. Furthermore, serine and arginine rich splicing factor 1 might be used to regulate cancer development and autoimmune diseases. In this review, we highlight how serine and arginine rich splicing factor 1 has been studied concerning neuroprotection. In addition, we draw attention to how serine and arginine rich splicing factor 1 is being studied in cancer and immunological disorders, as well as how serine and arginine rich splicing factor 1 acts outside the central or peripheral nervous system.