Cargando…
Epigenetic modifications and metabolic memory in diabetic retinopathy: beyond the surface
Epigenetics focuses on DNA methylation, histone modification, chromatin remodeling, noncoding RNAs, and other gene regulation mechanisms beyond the DNA sequence. In the past decade, epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10075108/ https://www.ncbi.nlm.nih.gov/pubmed/36571340 http://dx.doi.org/10.4103/1673-5374.361536 |
Sumario: | Epigenetics focuses on DNA methylation, histone modification, chromatin remodeling, noncoding RNAs, and other gene regulation mechanisms beyond the DNA sequence. In the past decade, epigenetic modifications have drawn more attention as they participate in the development and progression of diabetic retinopathy despite tight control of glucose levels. The underlying mechanisms of epigenetic modifications in diabetic retinopathy still urgently need to be elucidated. The diabetic condition facilitates epigenetic changes and influences target gene expression. In this review, we summarize the involvement of epigenetic modifications and metabolic memory in the development and progression of diabetic retinopathy and propose novel insights into the treatment of diabetic retinopathy. |
---|