Cargando…
Tourism demand forecasting of multi-attractions with spatiotemporal grid: a convolutional block attention module model
Effective tourist demand forecasting is crucial for company operations and destination management. Furthermore, tourists may plan better personalized multi-attraction itineraries based on demand forecasting to avoid travel peaks and improve the enjoyment of their vacation. This study developed a uni...
Autores principales: | Sun, Haodong, Yang, Yang, Chen, Yanyan, Liu, Xiaoming, Wang, Jiachen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10075180/ http://dx.doi.org/10.1007/s40558-023-00247-y |
Ejemplares similares
-
Knowledge mapping of tourism demand forecasting research
por: Zhang, Chengyuan, et al.
Publicado: (2020) -
Forecasting Oil Demand with the Development of Comprehensive Tourism
por: Huang, Yanrong, et al.
Publicado: (2021) -
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
An Insight of Deep Learning Based Demand Forecasting in Smart Grids
por: Aguiar-Pérez, Javier Manuel, et al.
Publicado: (2023) -
A fractionally integrated autoregressive moving average approach to forecasting tourism demand
por: Chu, Fong-Lin
Publicado: (2008)