Cargando…
Using unsupervised machine learning to quantify physical activity from accelerometry in a diverse and rapidly changing population
Accelerometers are widely used to measure physical activity behaviour, including in children. The traditional method for processing acceleration data uses cut points to define physical activity intensity, relying on calibration studies that relate the magnitude of acceleration to energy expenditure....
Autores principales: | Thornton, Christopher B., Kolehmainen, Niina, Nazarpour, Kianoush |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10075441/ https://www.ncbi.nlm.nih.gov/pubmed/37018183 http://dx.doi.org/10.1371/journal.pdig.0000220 |
Ejemplares similares
-
Physical activity in young children across developmental and health states: the ActiveCHILD study
por: Kolehmainen, Niina, et al.
Publicado: (2023) -
Supervised versus unsupervised approaches to classification of accelerometry data
por: Sur, Maitreyi, et al.
Publicado: (2023) -
Age Differences in Estimating Physical Activity by Wrist Accelerometry Using Machine Learning
por: Mardini, Mamoun T., et al.
Publicado: (2021) -
Digging deep into Golgi phenotypic diversity with unsupervised machine learning
por: Hussain, Shaista, et al.
Publicado: (2017) -
Unsupervised Machine Learning Identifies Quantifiable Patterns of Visual Field Loss in Idiopathic Intracranial Hypertension
por: Doshi, Hiten, et al.
Publicado: (2021)