Cargando…

In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films

In situ self-assembly of semiconducting emitters into multilayer cracks is a significant solution-processing method to fabricate organic high-Q lasers. However, it is still difficult to realize from conventional conjugated polymers. Herein, we create the molecular super-hindrance-etching technology,...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Dongqing, Li, Yang, Zhang, He, Zhang, Shuai, Gao, Yuezheng, Zhai, Tianrui, Hu, Shu, Sheng, Chuanxiang, Guo, Heng, Xu, Chunxiang, Wei, Ying, Li, Shifeng, Han, Yelong, Feng, Quanyou, Wang, Shasha, Xie, Linghai, Huang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076025/
https://www.ncbi.nlm.nih.gov/pubmed/37040485
http://dx.doi.org/10.34133/research.0027
_version_ 1785020046517469184
author Lin, Dongqing
Li, Yang
Zhang, He
Zhang, Shuai
Gao, Yuezheng
Zhai, Tianrui
Hu, Shu
Sheng, Chuanxiang
Guo, Heng
Xu, Chunxiang
Wei, Ying
Li, Shifeng
Han, Yelong
Feng, Quanyou
Wang, Shasha
Xie, Linghai
Huang, Wei
author_facet Lin, Dongqing
Li, Yang
Zhang, He
Zhang, Shuai
Gao, Yuezheng
Zhai, Tianrui
Hu, Shu
Sheng, Chuanxiang
Guo, Heng
Xu, Chunxiang
Wei, Ying
Li, Shifeng
Han, Yelong
Feng, Quanyou
Wang, Shasha
Xie, Linghai
Huang, Wei
author_sort Lin, Dongqing
collection PubMed
description In situ self-assembly of semiconducting emitters into multilayer cracks is a significant solution-processing method to fabricate organic high-Q lasers. However, it is still difficult to realize from conventional conjugated polymers. Herein, we create the molecular super-hindrance-etching technology, based on the π-functional nanopolymer PG-Cz, to modulate multilayer cracks applied in organic single-component random lasers. Massive interface cracks are formed by promoting interchain disentanglement with the super-steric hindrance effect of π-interrupted main chains, and multilayer morphologies with photonic-crystal-like ordering are also generated simultaneously during the drop-casting method. Meanwhile, the enhancement of quantum yields on micrometer-thick films (Φ = 40% to 50%) ensures high-efficient and ultrastable deep-blue emission. Furthermore, a deep-blue random lasing is achieved with narrow linewidths ~0.08 nm and high-quality factors Q ≈ 5,500 to 6,200. These findings will offer promising pathways of organic π-nanopolymers for the simplification of solution processes applied in lasing devices and wearable photonics.
format Online
Article
Text
id pubmed-10076025
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher AAAS
record_format MEDLINE/PubMed
spelling pubmed-100760252023-04-06 In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films Lin, Dongqing Li, Yang Zhang, He Zhang, Shuai Gao, Yuezheng Zhai, Tianrui Hu, Shu Sheng, Chuanxiang Guo, Heng Xu, Chunxiang Wei, Ying Li, Shifeng Han, Yelong Feng, Quanyou Wang, Shasha Xie, Linghai Huang, Wei Research (Wash D C) Research Article In situ self-assembly of semiconducting emitters into multilayer cracks is a significant solution-processing method to fabricate organic high-Q lasers. However, it is still difficult to realize from conventional conjugated polymers. Herein, we create the molecular super-hindrance-etching technology, based on the π-functional nanopolymer PG-Cz, to modulate multilayer cracks applied in organic single-component random lasers. Massive interface cracks are formed by promoting interchain disentanglement with the super-steric hindrance effect of π-interrupted main chains, and multilayer morphologies with photonic-crystal-like ordering are also generated simultaneously during the drop-casting method. Meanwhile, the enhancement of quantum yields on micrometer-thick films (Φ = 40% to 50%) ensures high-efficient and ultrastable deep-blue emission. Furthermore, a deep-blue random lasing is achieved with narrow linewidths ~0.08 nm and high-quality factors Q ≈ 5,500 to 6,200. These findings will offer promising pathways of organic π-nanopolymers for the simplification of solution processes applied in lasing devices and wearable photonics. AAAS 2023-01-16 2023 /pmc/articles/PMC10076025/ /pubmed/37040485 http://dx.doi.org/10.34133/research.0027 Text en Copyright © 2023 Dongqing Lin et al. https://creativecommons.org/licenses/by/4.0/Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Lin, Dongqing
Li, Yang
Zhang, He
Zhang, Shuai
Gao, Yuezheng
Zhai, Tianrui
Hu, Shu
Sheng, Chuanxiang
Guo, Heng
Xu, Chunxiang
Wei, Ying
Li, Shifeng
Han, Yelong
Feng, Quanyou
Wang, Shasha
Xie, Linghai
Huang, Wei
In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films
title In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films
title_full In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films
title_fullStr In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films
title_full_unstemmed In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films
title_short In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films
title_sort in situ super-hindrance-triggered multilayer cracks for random lasing in π-functional nanopolymer films
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076025/
https://www.ncbi.nlm.nih.gov/pubmed/37040485
http://dx.doi.org/10.34133/research.0027
work_keys_str_mv AT lindongqing insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT liyang insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT zhanghe insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT zhangshuai insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT gaoyuezheng insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT zhaitianrui insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT hushu insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT shengchuanxiang insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT guoheng insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT xuchunxiang insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT weiying insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT lishifeng insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT hanyelong insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT fengquanyou insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT wangshasha insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT xielinghai insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms
AT huangwei insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms