Cargando…
In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films
In situ self-assembly of semiconducting emitters into multilayer cracks is a significant solution-processing method to fabricate organic high-Q lasers. However, it is still difficult to realize from conventional conjugated polymers. Herein, we create the molecular super-hindrance-etching technology,...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076025/ https://www.ncbi.nlm.nih.gov/pubmed/37040485 http://dx.doi.org/10.34133/research.0027 |
_version_ | 1785020046517469184 |
---|---|
author | Lin, Dongqing Li, Yang Zhang, He Zhang, Shuai Gao, Yuezheng Zhai, Tianrui Hu, Shu Sheng, Chuanxiang Guo, Heng Xu, Chunxiang Wei, Ying Li, Shifeng Han, Yelong Feng, Quanyou Wang, Shasha Xie, Linghai Huang, Wei |
author_facet | Lin, Dongqing Li, Yang Zhang, He Zhang, Shuai Gao, Yuezheng Zhai, Tianrui Hu, Shu Sheng, Chuanxiang Guo, Heng Xu, Chunxiang Wei, Ying Li, Shifeng Han, Yelong Feng, Quanyou Wang, Shasha Xie, Linghai Huang, Wei |
author_sort | Lin, Dongqing |
collection | PubMed |
description | In situ self-assembly of semiconducting emitters into multilayer cracks is a significant solution-processing method to fabricate organic high-Q lasers. However, it is still difficult to realize from conventional conjugated polymers. Herein, we create the molecular super-hindrance-etching technology, based on the π-functional nanopolymer PG-Cz, to modulate multilayer cracks applied in organic single-component random lasers. Massive interface cracks are formed by promoting interchain disentanglement with the super-steric hindrance effect of π-interrupted main chains, and multilayer morphologies with photonic-crystal-like ordering are also generated simultaneously during the drop-casting method. Meanwhile, the enhancement of quantum yields on micrometer-thick films (Φ = 40% to 50%) ensures high-efficient and ultrastable deep-blue emission. Furthermore, a deep-blue random lasing is achieved with narrow linewidths ~0.08 nm and high-quality factors Q ≈ 5,500 to 6,200. These findings will offer promising pathways of organic π-nanopolymers for the simplification of solution processes applied in lasing devices and wearable photonics. |
format | Online Article Text |
id | pubmed-10076025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | AAAS |
record_format | MEDLINE/PubMed |
spelling | pubmed-100760252023-04-06 In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films Lin, Dongqing Li, Yang Zhang, He Zhang, Shuai Gao, Yuezheng Zhai, Tianrui Hu, Shu Sheng, Chuanxiang Guo, Heng Xu, Chunxiang Wei, Ying Li, Shifeng Han, Yelong Feng, Quanyou Wang, Shasha Xie, Linghai Huang, Wei Research (Wash D C) Research Article In situ self-assembly of semiconducting emitters into multilayer cracks is a significant solution-processing method to fabricate organic high-Q lasers. However, it is still difficult to realize from conventional conjugated polymers. Herein, we create the molecular super-hindrance-etching technology, based on the π-functional nanopolymer PG-Cz, to modulate multilayer cracks applied in organic single-component random lasers. Massive interface cracks are formed by promoting interchain disentanglement with the super-steric hindrance effect of π-interrupted main chains, and multilayer morphologies with photonic-crystal-like ordering are also generated simultaneously during the drop-casting method. Meanwhile, the enhancement of quantum yields on micrometer-thick films (Φ = 40% to 50%) ensures high-efficient and ultrastable deep-blue emission. Furthermore, a deep-blue random lasing is achieved with narrow linewidths ~0.08 nm and high-quality factors Q ≈ 5,500 to 6,200. These findings will offer promising pathways of organic π-nanopolymers for the simplification of solution processes applied in lasing devices and wearable photonics. AAAS 2023-01-16 2023 /pmc/articles/PMC10076025/ /pubmed/37040485 http://dx.doi.org/10.34133/research.0027 Text en Copyright © 2023 Dongqing Lin et al. https://creativecommons.org/licenses/by/4.0/Exclusive licensee Science and Technology Review Publishing House. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Lin, Dongqing Li, Yang Zhang, He Zhang, Shuai Gao, Yuezheng Zhai, Tianrui Hu, Shu Sheng, Chuanxiang Guo, Heng Xu, Chunxiang Wei, Ying Li, Shifeng Han, Yelong Feng, Quanyou Wang, Shasha Xie, Linghai Huang, Wei In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films |
title | In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films |
title_full | In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films |
title_fullStr | In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films |
title_full_unstemmed | In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films |
title_short | In Situ Super-Hindrance-Triggered Multilayer Cracks for Random Lasing in π-Functional Nanopolymer Films |
title_sort | in situ super-hindrance-triggered multilayer cracks for random lasing in π-functional nanopolymer films |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076025/ https://www.ncbi.nlm.nih.gov/pubmed/37040485 http://dx.doi.org/10.34133/research.0027 |
work_keys_str_mv | AT lindongqing insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT liyang insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT zhanghe insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT zhangshuai insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT gaoyuezheng insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT zhaitianrui insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT hushu insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT shengchuanxiang insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT guoheng insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT xuchunxiang insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT weiying insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT lishifeng insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT hanyelong insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT fengquanyou insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT wangshasha insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT xielinghai insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms AT huangwei insitusuperhindrancetriggeredmultilayercracksforrandomlasinginpfunctionalnanopolymerfilms |