Cargando…
Multivariate time-series sensor vital sign forecasting of cardiovascular and chronic respiratory diseases
Approximately 19 million people die each year from cardiovascular and chronic respiratory diseases. As a result of the recent Covid-19 epidemic, blood pressure, cholesterol, and blood sugar levels have risen. Not only do healthcare institutions benefit from studying physiological vital signs, but in...
Autores principales: | Ahmed, Usman, Lin, Jerry Chun-Wei, Srivastava, Gautam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076073/ https://www.ncbi.nlm.nih.gov/pubmed/37168459 http://dx.doi.org/10.1016/j.suscom.2023.100868 |
Ejemplares similares
-
Multivariate Count Data Models for Time Series Forecasting
por: Shapovalova, Yuliya, et al.
Publicado: (2021) -
Evaluation of interpretability methods for multivariate time series forecasting
por: Ozyegen, Ozan, et al.
Publicado: (2021) -
Forecasting escalation of cardio-respiratory instability using noninvasive vital sign monitoring data
por: Guillame-Bert, M, et al.
Publicado: (2015) -
Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
por: Huang, Lei, et al.
Publicado: (2022) -
A Novel Encoder-Decoder Model for Multivariate Time Series Forecasting
por: Zhang, Huihui, et al.
Publicado: (2022)