Cargando…
Targeting Shikimate Kinase Pathway of Acinetobacter baumannii: A Structure-Based Computational Approach to Identify Antibacterial Compounds
Acinetobacter baumannii (A. baumannii) is an opportunistic bacterium that has developed multidrug resistance (MDR) to most of today's antibiotics, posing a significant risk to human health. Considering the fact that developing novel drugs is a time-consuming and expensive procedure, this resear...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076115/ https://www.ncbi.nlm.nih.gov/pubmed/37034553 http://dx.doi.org/10.1155/2023/6360187 |
_version_ | 1785020066641739776 |
---|---|
author | Shil, Aparna Akter, Most. Afrin Sultana, Arafin Halder, Sajal Kumar Himel, Mahbubul Kabir |
author_facet | Shil, Aparna Akter, Most. Afrin Sultana, Arafin Halder, Sajal Kumar Himel, Mahbubul Kabir |
author_sort | Shil, Aparna |
collection | PubMed |
description | Acinetobacter baumannii (A. baumannii) is an opportunistic bacterium that has developed multidrug resistance (MDR) to most of today's antibiotics, posing a significant risk to human health. Considering the fact that developing novel drugs is a time-consuming and expensive procedure, this research focuses on utilizing computational resources for repurposing antibacterial agents for A. baumannii. We targeted shikimate kinase, an essential enzyme in A. baumannii, that plays a significant role in the metabolic process. The basis for generating new therapeutic compounds is to inhibit the shikimate kinase and thereby targeting the shikimate pathway. Herein, 1941 drug-like compounds were investigated in different in silico techniques for assessing drug-likeness properties, ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiling, binding affinity, and conformation analysis utilizing Autodock-vina and SwissDock. CHEMBL1237, CHEMBL1237119, CHEMBL2018096, and CHEMBL39167178 were determined as potential drug candidates for suppressing shikimate kinase protein. Molecular Dynamics Simulation (MDS) results for root mean square deviation, root mean square fluctuation, hydrogen bond, and gyration radius confirm the drug candidates' molecular stability with the target protein. According to this study, CHEMBL1237 (Lisinopril) could be the most suitable candidate for A. baumannii. Our investigation suggests that the inhibitors of shikimate kinase could represent promising treatment options for A. baumannii. However, further in vitro and in vivo studies are necessary to validate the therapeutic potential of the suggested drug candidates. |
format | Online Article Text |
id | pubmed-10076115 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-100761152023-04-06 Targeting Shikimate Kinase Pathway of Acinetobacter baumannii: A Structure-Based Computational Approach to Identify Antibacterial Compounds Shil, Aparna Akter, Most. Afrin Sultana, Arafin Halder, Sajal Kumar Himel, Mahbubul Kabir J Trop Med Research Article Acinetobacter baumannii (A. baumannii) is an opportunistic bacterium that has developed multidrug resistance (MDR) to most of today's antibiotics, posing a significant risk to human health. Considering the fact that developing novel drugs is a time-consuming and expensive procedure, this research focuses on utilizing computational resources for repurposing antibacterial agents for A. baumannii. We targeted shikimate kinase, an essential enzyme in A. baumannii, that plays a significant role in the metabolic process. The basis for generating new therapeutic compounds is to inhibit the shikimate kinase and thereby targeting the shikimate pathway. Herein, 1941 drug-like compounds were investigated in different in silico techniques for assessing drug-likeness properties, ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiling, binding affinity, and conformation analysis utilizing Autodock-vina and SwissDock. CHEMBL1237, CHEMBL1237119, CHEMBL2018096, and CHEMBL39167178 were determined as potential drug candidates for suppressing shikimate kinase protein. Molecular Dynamics Simulation (MDS) results for root mean square deviation, root mean square fluctuation, hydrogen bond, and gyration radius confirm the drug candidates' molecular stability with the target protein. According to this study, CHEMBL1237 (Lisinopril) could be the most suitable candidate for A. baumannii. Our investigation suggests that the inhibitors of shikimate kinase could represent promising treatment options for A. baumannii. However, further in vitro and in vivo studies are necessary to validate the therapeutic potential of the suggested drug candidates. Hindawi 2023-03-29 /pmc/articles/PMC10076115/ /pubmed/37034553 http://dx.doi.org/10.1155/2023/6360187 Text en Copyright © 2023 Aparna Shil et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Shil, Aparna Akter, Most. Afrin Sultana, Arafin Halder, Sajal Kumar Himel, Mahbubul Kabir Targeting Shikimate Kinase Pathway of Acinetobacter baumannii: A Structure-Based Computational Approach to Identify Antibacterial Compounds |
title | Targeting Shikimate Kinase Pathway of Acinetobacter baumannii: A Structure-Based Computational Approach to Identify Antibacterial Compounds |
title_full | Targeting Shikimate Kinase Pathway of Acinetobacter baumannii: A Structure-Based Computational Approach to Identify Antibacterial Compounds |
title_fullStr | Targeting Shikimate Kinase Pathway of Acinetobacter baumannii: A Structure-Based Computational Approach to Identify Antibacterial Compounds |
title_full_unstemmed | Targeting Shikimate Kinase Pathway of Acinetobacter baumannii: A Structure-Based Computational Approach to Identify Antibacterial Compounds |
title_short | Targeting Shikimate Kinase Pathway of Acinetobacter baumannii: A Structure-Based Computational Approach to Identify Antibacterial Compounds |
title_sort | targeting shikimate kinase pathway of acinetobacter baumannii: a structure-based computational approach to identify antibacterial compounds |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076115/ https://www.ncbi.nlm.nih.gov/pubmed/37034553 http://dx.doi.org/10.1155/2023/6360187 |
work_keys_str_mv | AT shilaparna targetingshikimatekinasepathwayofacinetobacterbaumanniiastructurebasedcomputationalapproachtoidentifyantibacterialcompounds AT aktermostafrin targetingshikimatekinasepathwayofacinetobacterbaumanniiastructurebasedcomputationalapproachtoidentifyantibacterialcompounds AT sultanaarafin targetingshikimatekinasepathwayofacinetobacterbaumanniiastructurebasedcomputationalapproachtoidentifyantibacterialcompounds AT haldersajalkumar targetingshikimatekinasepathwayofacinetobacterbaumanniiastructurebasedcomputationalapproachtoidentifyantibacterialcompounds AT himelmahbubulkabir targetingshikimatekinasepathwayofacinetobacterbaumanniiastructurebasedcomputationalapproachtoidentifyantibacterialcompounds |