Cargando…
Synthesis, characterization and protective efficiency of novel polybenzoxazine precursor as an anticorrosive coating for mild steel
In this study, 2-[(E)-(hexylimino)methyl] phenol (SA-Hex-SF) was synthesized by adding salicylaldehyde (SA) and n-hexylamine (Hex-NH(2)), which was subsequently reduced by sodium borohydride to produce 2-[(hexylamino)methyl] phenol (SA-Hex-NH). Finally, the SA-Hex-NH reacted with formaldehyde to giv...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076265/ https://www.ncbi.nlm.nih.gov/pubmed/37019919 http://dx.doi.org/10.1038/s41598-023-30364-x |
Sumario: | In this study, 2-[(E)-(hexylimino)methyl] phenol (SA-Hex-SF) was synthesized by adding salicylaldehyde (SA) and n-hexylamine (Hex-NH(2)), which was subsequently reduced by sodium borohydride to produce 2-[(hexylamino)methyl] phenol (SA-Hex-NH). Finally, the SA-Hex-NH reacted with formaldehyde to give a benzoxazine monomer (SA-Hex-BZ). Then, the monomer was thermally polymerized at 210 °C to produce the poly(SA-Hex-BZ). The chemical composition of SA-Hex-BZ was examined using FT-IR, (1)H, and (13)C NMR spectroscopy. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray Diffraction (XRD), respectively, were used to examine the thermal behavior, surface morphology, and crystallinity of the SA-Hex-BZ and its PBZ polymer. Mild steel (MS) was coated by poly(SA-Hex-BZ) which was quickly prepared using spray coating and thermal curing techniques (MS). Finally, the electrochemical tests were used to evaluate the poly(SA-Hex-BZ)-coating on MS as anti-corrosion capabilities. According to this study, the poly(SA-Hex-BZ) coating was hydrophobic, and corrosion efficiency reached 91.7%. |
---|