Cargando…
NASHmap: clinical utility of a machine learning model to identify patients at risk of NASH in real-world settings
The NASHmap model is a non-invasive tool using 14 variables (features) collected in standard clinical practice to classify patients as probable nonalcoholic steatohepatitis (NASH) or non-NASH, and here we have explored its performance and prediction accuracy. The National Institute of Diabetes and D...
Autores principales: | Schattenberg, Jörn M., Balp, Maria-Magdalena, Reinhart, Brenda, Tietz, Andreas, Regnier, Stephane A., Capkun, Gorana, Ye, Qin, Loeffler, Jürgen, Pedrosa, Marcos C., Docherty, Matt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076319/ https://www.ncbi.nlm.nih.gov/pubmed/37019931 http://dx.doi.org/10.1038/s41598-023-32551-2 |
Ejemplares similares
-
Development of a novel machine learning model to predict presence of nonalcoholic steatohepatitis
por: Docherty, Matt, et al.
Publicado: (2021) -
The Patient Perspectives on Future Therapeutic Options in NASH and Patient Needs
por: Cook, Nigel, et al.
Publicado: (2019) -
The burden of nonalcoholic steatohepatitis (NASH) in the United States
por: Tapper, Elliot B., et al.
Publicado: (2023) -
The burden of non-alcoholic steatohepatitis (NASH) among patients from Europe: A real-world patient-reported outcomes study
por: Balp, Maria-Magdalena, et al.
Publicado: (2019) -
Impact of the COVID-19 pandemic on healthcare resource utilization across selected disease areas in the USA
por: Engelbrecht, Kayla, et al.
Publicado: (2022)