Cargando…

Research of deformation law about guide rails under the action of mining deformation in mine vertical shaft

To lay a foundation for alleviating the influence of mining shaft deformation (MSD) on the guide rail (GR) and monitoring the shaft deformation state, this paper studies the deformation law and mechanism of the guide rail under the MSD. Firstly, a spring is used to simplify the interaction between t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jianlong, Ma, Chi, Han, Jinna, Xiao, Xingming, Jiang, Yuqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076422/
https://www.ncbi.nlm.nih.gov/pubmed/37019966
http://dx.doi.org/10.1038/s41598-023-32767-2
Descripción
Sumario:To lay a foundation for alleviating the influence of mining shaft deformation (MSD) on the guide rail (GR) and monitoring the shaft deformation state, this paper studies the deformation law and mechanism of the guide rail under the MSD. Firstly, a spring is used to simplify the interaction between the shaft lining and surrounding rock soil mass (SRSM) under MSD, and its stiffness coefficient is deduced by the elastic subgrade reaction method. Secondly, a simplified finite element model is established based on spring element, the stiffness coefficient is calculated by the derivation formula, and its effectiveness is verified. Finally, the deformation law and mechanism of GR are analyzed under different types and degrees of MSD, and the deformation characteristics are studied under the disconnection between the shaft, bunton and guide rail. The results show that the established finite element model can better simulate the interaction between the shaft lining and SRSM, and the calculation efficiency is greatly improved. The guide rail deformation (GRD) has a strong ability to characterize MSD and owns the distinctive feature corresponding to different types and degrees of MSD and the connection state. This research can provide reference and guidance for the shaft deformation monitoring and the maintenance and installation of the GR, and also lays a groundwork for studying operation characteristic of hoisting conveyance under MSD.