Cargando…

Flood sensitivity assessment of super cities

In the context of global urbanization, more and more people are attracted to these cities with superior geographical conditions and strategic positions, resulting in the emergence of world super cities. However, with the increasing of urban development, the underlying surface of the city has changed...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zijun, Chen, Xiangyu, Qi, Zhanshuo, Cui, Chenfeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076434/
https://www.ncbi.nlm.nih.gov/pubmed/37019887
http://dx.doi.org/10.1038/s41598-023-32149-8
_version_ 1785020130925740032
author Wang, Zijun
Chen, Xiangyu
Qi, Zhanshuo
Cui, Chenfeng
author_facet Wang, Zijun
Chen, Xiangyu
Qi, Zhanshuo
Cui, Chenfeng
author_sort Wang, Zijun
collection PubMed
description In the context of global urbanization, more and more people are attracted to these cities with superior geographical conditions and strategic positions, resulting in the emergence of world super cities. However, with the increasing of urban development, the underlying surface of the city has changed, the soil originally covered with vegetation has been substituted by hardened pavement such as asphalt and cement roads. Therefore, the infiltration capacity of urban rainwater is greatly limited, and waterlogging is becoming more and more serious. In addition, the suburbs of the main urban areas of super cities are usually villages and mountains, and frequent flash floods seriously threaten the life and property safety of people in there. Flood sensitivity assessment is an effective method to predict and mitigate flood disasters. Accordingly, this study aimed at identifying the areas vulnerable to flood by using Geographic Information System (GIS) and Remote Sensing (RS) and apply Logistic Regression (LR) model to create a flood sensitivity map of Beijing. 260 flood points in history and 12 predictors [elevation, slope, aspect, distance to rivers, Topographic Wetness Index (TWI), Stream Power Index (SPI), Sediment Transport Index (STI), curvature, plan curvature, Land Use/Land Cover (LULC), soil, and rainfall] were used in this study. Even more noteworthy is that most of the previous studies discussed flash flood and waterlogging separately. However, flash flood points and waterlogging points were included together in this study. We evaluated the sensitivity of flash flood and waterlogging as a whole and obtained different results from previous studies. In addition, most of the previous studies focused on a certain river basin or small towns as the study area. Beijing is the world's ninth largest super cities, which was unusual in previous studies and has important reference significance for the flood sensitivity analysis of other super cities. The flood inventory data were randomly subdivided into training (70%) and test (30%) sets for model construction and testing using the Area Under Curve (AUC), respectively. The results turn out that: (1) elevation, slope, rainfall, LULC, soil and TWI were highly important among these elements, and were the most influential variables in the assessment of flood sensitivity. (2) The AUC of the test dataset revealed a prediction rate of 81.0%. The AUC was greater than 0.8, indicating that the model assessment accuracy was high. (3) The proportion of high risk and extremely high risk areas was 27.44%, including 69.26% of the flood events in this study, indicating that the flood distribution in these areas was relatively dense and the susceptibility was high. Super cities have a high population density, and once flood disasters occur, the losses brought by them are immeasurable. Thus, flood sensitivity map can provide meaningful information for policy makers to enact appropriate policies to reduce future damage.
format Online
Article
Text
id pubmed-10076434
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100764342023-04-07 Flood sensitivity assessment of super cities Wang, Zijun Chen, Xiangyu Qi, Zhanshuo Cui, Chenfeng Sci Rep Article In the context of global urbanization, more and more people are attracted to these cities with superior geographical conditions and strategic positions, resulting in the emergence of world super cities. However, with the increasing of urban development, the underlying surface of the city has changed, the soil originally covered with vegetation has been substituted by hardened pavement such as asphalt and cement roads. Therefore, the infiltration capacity of urban rainwater is greatly limited, and waterlogging is becoming more and more serious. In addition, the suburbs of the main urban areas of super cities are usually villages and mountains, and frequent flash floods seriously threaten the life and property safety of people in there. Flood sensitivity assessment is an effective method to predict and mitigate flood disasters. Accordingly, this study aimed at identifying the areas vulnerable to flood by using Geographic Information System (GIS) and Remote Sensing (RS) and apply Logistic Regression (LR) model to create a flood sensitivity map of Beijing. 260 flood points in history and 12 predictors [elevation, slope, aspect, distance to rivers, Topographic Wetness Index (TWI), Stream Power Index (SPI), Sediment Transport Index (STI), curvature, plan curvature, Land Use/Land Cover (LULC), soil, and rainfall] were used in this study. Even more noteworthy is that most of the previous studies discussed flash flood and waterlogging separately. However, flash flood points and waterlogging points were included together in this study. We evaluated the sensitivity of flash flood and waterlogging as a whole and obtained different results from previous studies. In addition, most of the previous studies focused on a certain river basin or small towns as the study area. Beijing is the world's ninth largest super cities, which was unusual in previous studies and has important reference significance for the flood sensitivity analysis of other super cities. The flood inventory data were randomly subdivided into training (70%) and test (30%) sets for model construction and testing using the Area Under Curve (AUC), respectively. The results turn out that: (1) elevation, slope, rainfall, LULC, soil and TWI were highly important among these elements, and were the most influential variables in the assessment of flood sensitivity. (2) The AUC of the test dataset revealed a prediction rate of 81.0%. The AUC was greater than 0.8, indicating that the model assessment accuracy was high. (3) The proportion of high risk and extremely high risk areas was 27.44%, including 69.26% of the flood events in this study, indicating that the flood distribution in these areas was relatively dense and the susceptibility was high. Super cities have a high population density, and once flood disasters occur, the losses brought by them are immeasurable. Thus, flood sensitivity map can provide meaningful information for policy makers to enact appropriate policies to reduce future damage. Nature Publishing Group UK 2023-04-05 /pmc/articles/PMC10076434/ /pubmed/37019887 http://dx.doi.org/10.1038/s41598-023-32149-8 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wang, Zijun
Chen, Xiangyu
Qi, Zhanshuo
Cui, Chenfeng
Flood sensitivity assessment of super cities
title Flood sensitivity assessment of super cities
title_full Flood sensitivity assessment of super cities
title_fullStr Flood sensitivity assessment of super cities
title_full_unstemmed Flood sensitivity assessment of super cities
title_short Flood sensitivity assessment of super cities
title_sort flood sensitivity assessment of super cities
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076434/
https://www.ncbi.nlm.nih.gov/pubmed/37019887
http://dx.doi.org/10.1038/s41598-023-32149-8
work_keys_str_mv AT wangzijun floodsensitivityassessmentofsupercities
AT chenxiangyu floodsensitivityassessmentofsupercities
AT qizhanshuo floodsensitivityassessmentofsupercities
AT cuichenfeng floodsensitivityassessmentofsupercities