Cargando…
Application of conditional generative adversarial network to multi-step car-following modeling
Car-following modeling is essential in the longitudinal control for connected and autonomous vehicles (CAVs). Considering the advantage of the generative adversarial network (GAN) in capturing realistic data distribution, this paper applies conditional GAN (CGAN) to car-following modeling. The gener...
Autores principales: | Ma, Lijing, Qu, Shiru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076580/ https://www.ncbi.nlm.nih.gov/pubmed/37033415 http://dx.doi.org/10.3389/fnbot.2023.1148892 |
Ejemplares similares
-
A Physics-Informed Generative Car-Following Model for Connected Autonomous Vehicles
por: Ma, Lijing, et al.
Publicado: (2023) -
Medical image fusion quality assessment based on conditional generative adversarial network
por: Tang, Lu, et al.
Publicado: (2022) -
Modeling Car-Following Behaviors and Driving Styles with Generative Adversarial Imitation Learning
por: Zhou, Yang, et al.
Publicado: (2020) -
BNLoop-GAN: a multi-loop generative adversarial model on brain network learning to classify Alzheimer’s disease
por: Cao, Yu, et al.
Publicado: (2023) -
Review of Generative Adversarial Networks in mono- and cross-modal biomedical image registration
por: Han, Tingting, et al.
Publicado: (2022)