Cargando…
Integrating single-cell analysis and machine learning to create glycosylation-based gene signature for prognostic prediction of uveal melanoma
BACKGROUND: Increasing evidence suggests a correlation between glycosylation and the onset of cancer. However, the clinical relevance of glycosylation-related genes (GRGs) in uveal melanoma (UM) is yet to be fully understood. This study aimed to shed light on the impact of GRGs on UM prognosis. METH...
Autores principales: | Liu, Jianlan, Zhang, Pengpeng, Yang, Fang, Jiang, Keyu, Sun, Shiyi, Xia, Zhijia, Yao, Gang, Tang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076776/ https://www.ncbi.nlm.nih.gov/pubmed/37033251 http://dx.doi.org/10.3389/fendo.2023.1163046 |
Ejemplares similares
-
Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma
por: Chi, Hao, et al.
Publicado: (2022) -
Integrating multiple machine learning methods to construct glutamine metabolism-related signatures in lung adenocarcinoma
por: Zhang, Pengpeng, et al.
Publicado: (2023) -
Prognostic Implications of Novel Ten-Gene Signature in Uveal Melanoma
por: Luo, Huan, et al.
Publicado: (2020) -
Immune implication of an autophagy-related prognostic signature in uveal melanoma
por: Chuah, Samuel, et al.
Publicado: (2021) -
A Novel Four Genes of Prognostic Signature for Uveal Melanoma
por: Liu, Yan, et al.
Publicado: (2022)