Cargando…
RAD-UNet: Research on an improved lung nodule semantic segmentation algorithm based on deep learning
OBJECTIVE: Due to the small proportion of target pixels in computed tomography (CT) images and the high similarity with the environment, convolutional neural network-based semantic segmentation models are difficult to develop by using deep learning. Extracting feature information often leads to unde...
Autores principales: | Wu, Zezhi, Li, Xiaoshu, Zuo, Jianhui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076852/ https://www.ncbi.nlm.nih.gov/pubmed/37035155 http://dx.doi.org/10.3389/fonc.2023.1084096 |
Ejemplares similares
-
Active Learning with Bayesian UNet for Efficient Semantic Image Segmentation
por: Saidu, Isah Charles, et al.
Publicado: (2021) -
AX-Unet: A Deep Learning Framework for Image Segmentation to Assist Pancreatic Tumor Diagnosis
por: Yang, Minqiang, et al.
Publicado: (2022) -
Improved UNet Deep Learning Model for Automatic Detection of Lung Cancer Nodules
por: Kumar, Vinay, et al.
Publicado: (2023) -
A New Semantic Segmentation Framework Based on UNet
por: Fu, Leiyang, et al.
Publicado: (2023) -
Improving Breast Cancer Detection and Diagnosis through Semantic Segmentation Using the Unet3+ Deep Learning Framework
por: Alam, Taukir, et al.
Publicado: (2023)