Cargando…
Pyridine Derivatives as Potential Inhibitors for Coronavirus SARS-CoV-2: A Molecular Docking Study
Coronavirus SARS-CoV-2, a causative agent for the global epidemic disease COVID-19, which has a highest modality rate. Several initiatives have been undertaken to repurpose current antiviral medications and tested the classic pyridine derivatives (PyDev), which have showed substantial therapeutic po...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076986/ https://www.ncbi.nlm.nih.gov/pubmed/37038549 http://dx.doi.org/10.1177/11779322221146651 |
Sumario: | Coronavirus SARS-CoV-2, a causative agent for the global epidemic disease COVID-19, which has a highest modality rate. Several initiatives have been undertaken to repurpose current antiviral medications and tested the classic pyridine derivatives (PyDev), which have showed substantial therapeutic potential against a variety of illnesses and also have several biological functions such as, antibacterial, antiviral, and anti-inflammatory. However, limited reports are available for the treatment of Coronavirus SARS-CoV-2 using PyDev. Hence, the possibilities of the best-described PyDev molecules of powerful Coronavirus SARS-CoV-2 inhibitors have been attempted in this investigation. This study primarily focused on blocking four key targets of Coronavirus SARS-CoV-2 proteins. Terpyridine has shown the greatest inhibitory potential (with a binding energy of −8.8 kcal/mol) against all four coronavirus targets. This study results would pave the potential lead medication for Coronavirus SARS-CoV-2 therapeutic strategies. |
---|