Cargando…
An Artificial Neural Network for Nasogastric Tube Position Decision Support
PURPOSE: To develop and validate a deep learning model for detection of nasogastric tube (NGT) malposition on chest radiographs and assess model impact as a clinical decision support tool for junior physicians to help determine whether feeding can be safely performed in patients (feed/do not feed)....
Autores principales: | Drozdov, Ignat, Dixon, Rachael, Szubert, Benjamin, Dunn, Jessica, Green, Darren, Hall, Nicola, Shirandami, Arman, Rosas, Sofia, Grech, Ryan, Puttagunta, Srikanth, Hall, Mark, Lowe, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077078/ https://www.ncbi.nlm.nih.gov/pubmed/37035435 http://dx.doi.org/10.1148/ryai.220165 |
Ejemplares similares
-
Development and prospective validation of COVID-19 chest X-ray screening model for patients attending emergency departments
por: Drozdov, Ignat, et al.
Publicado: (2021) -
Supervised and unsupervised language modelling in Chest X-Ray radiological reports
por: Drozdov, Ignat, et al.
Publicado: (2020) -
Nasogastric Tube Syndrome: The Size and Type of the Nasogastric Tube May Contribute to the Development of Nasogastric Tube Syndrome
por: Kanbayashi, Takamichi, et al.
Publicado: (2021) -
Nasogastric tube dislodgement: a problem on our ICU
por: Morton, B, et al.
Publicado: (2013) -
A stubborn nasogastric tube: self-knotting of a nasogastric tube
por: Tsandiraki, Justin, et al.
Publicado: (2022)