Cargando…
ADMANI: Annotated Digital Mammograms and Associated Non-Image Datasets
Supplemental material is available for this article. Keywords: Mammography, Screening, Convolutional Neural Network (CNN) Published under a CC BY 4.0 license. See also the commentary by Cadrin-Chênevert in this issue.
Autores principales: | Frazer, Helen M. L., Tang, Jennifer S. N., Elliott, Michael S., Kunicki, Katrina M., Hill, Brendan, Karthik, Ravishankar, Kwok, Chun Fung, Peña-Solorzano, Carlos A., Chen, Yuanhong, Wang, Chong, Al-Qershi, Osamah, Fox, Samantha K., Li, Shuai, Makalic, Enes, Nguyen, Tuong L., Schmidt, Daniel F., Basnayake Ralalage, Prabhathi, Lippey, Jocelyn F., Brotchie, Peter, Hopper, John L., Carneiro, Gustavo, McCarthy, Davis J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077091/ https://www.ncbi.nlm.nih.gov/pubmed/37035431 http://dx.doi.org/10.1148/ryai.220072 |
Ejemplares similares
-
Going Beyond Conventional Mammographic Density to Discover Novel Mammogram-Based Predictors of Breast Cancer Risk
por: Hopper, John L, et al.
Publicado: (2020) -
Evaluation of deep learning‐based artificial intelligence techniques for breast cancer detection on mammograms: Results from a retrospective study using a BreastScreen Victoria dataset
por: Frazer, Helen ML, et al.
Publicado: (2021) -
Causal relationships between breast cancer risk factors based on mammographic features
por: Ye, Zhoufeng, et al.
Publicado: (2023) -
High-Throughput and Cost-Effective Characterization of Induced Pluripotent Stem Cells
por: D'Antonio, Matteo, et al.
Publicado: (2017) -
Chyle leak following biliary pancreatitis
por: Lippey, Jocelyn F., et al.
Publicado: (2014)